login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of arrays of n integers in -6..6 with sum zero.
9

%I #36 Oct 16 2024 09:23:38

%S 1,1,13,127,1469,17151,204763,2473325,30162301,370487485,4577127763,

%T 56813989827,707972099627,8851373201919,110976634957761,

%U 1394804756117877,17567994350713469,221690794842728445,2802194053806820153

%N Number of arrays of n integers in -6..6 with sum zero.

%C Also largest coefficient of (1+x+...+x^12)^n. - _Vaclav Kotesovec_, Aug 09 2013

%H Seiichi Manyama, <a href="/A201550/b201550.txt">Table of n, a(n) for n = 0..450</a> (terms 1..210 from R. H. Hardin) [It was suggested that the initial terms of this b-file were wrong, but in fact they are correct. - _N. J. A. Sloane_, Jan 19 2019]

%H Vaclav Kotesovec, <a href="/A201550/a201550.txt">Recurrence</a>

%F a(n) ~ 13^n / sqrt(28*Pi*n). - _Vaclav Kotesovec_, Aug 09 2013

%F a(n) = Sum_{k = 0..floor(n/2)} (-1)^k * binomial(n, k)*binomial(7*n-13*k-1, n-1). - _Peter Bala_, Oct 16 2024

%e Some solutions for n=5

%e .-2...-5...-2...-1....3...-6....0...-3....1....6...-6...-2....5....0...-4...-3

%e ..2...-3...-2....3....0...-1....6...-4....6....1....5....2...-1....3....2....3

%e ..0...-4....4...-6...-4....1...-3....0...-4...-5....0...-6...-3....0....4...-4

%e ..0....6....3....5...-5....6....0....4....3...-4....4....0...-5...-3....3...-1

%e ..0....6...-3...-1....6....0...-3....3...-6....2...-3....6....4....0...-5....5

%p seq(add((-1)^k * binomial(n, k)*binomial(7*n-13*k-1, n-1), k = 0..floor(n/2)), n = 0..20); # _Peter Bala_, Oct 16 2024

%t Table[Coefficient[Expand[Sum[x^j,{j,0,12}]^n],x^(6*n)],{n,1,20}] (* _Vaclav Kotesovec_, Aug 09 2013 *)

%o (PARI) {a(n) = polcoeff((sum(k=0, 12, x^k))^n, 6*n, x)} \\ _Seiichi Manyama_, Dec 14 2018

%Y Column 6 of A201552.

%Y Cf. A001405, A002426, A005190, A005191, A018901, A025012, A025013, A025014, A025015, A201549, A225779.

%K nonn,easy

%O 0,3

%A _R. H. Hardin_, Dec 02 2011

%E a(0)=1 prepended by _Seiichi Manyama_, Dec 14 2018