The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A075467 Trajectory of 270798 under the Reverse and Add! operation carried out in base 4, written in base 10. 6
270798, 1005135, 1994670, 5058075, 20047500, 33313725, 66545850, 112201785, 225464610, 368353785, 835135950, 1587633825, 2841028950, 5347819200, 5598498225, 10862757750, 21453946560, 22456662705, 43576370550 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,1
COMMENTS
The base 4 trajectory of 270798 = A075421(370) provably does not contain a palindrome. A proof along the lines of Klaus Brockhaus, On the 'Reverse and Add!' algorithm in base 2, can be based on the formula given below. - The generating function given describes the sequence from a(11) onward; the g.f. for the complete sequence is known but nearly twice as big.
LINKS
FORMULA
a(0), ..., a(10) as above; for n > 10 and n = 5 (mod 6): a(n) = 5*4^(2*k+10)+15341035*4^k-15 where k = (n+1)/6; n = 0 (mod 6): a(n) = 10*4^(2*k+10)+9792150*4^k-10 where k = n/6; n = 1 (mod 6): a(n) = 20*4^(2*k+10)-1305620*4^k where k = (n-1)/6; n = 2 (mod 6): a(n) = 20*4^(2*k+10)+14361820*4^k-15 where k = (n-2)/6; n = 3 (mod 6): a(n) = 40*4^(2*k+10)+7833720*4^k-10 where k = (n-3)/6; n = 4 (mod 6): a(n) = 80*4^(2*k+10)-1305620*4^k where k = (n-4)/6. G.f.: -15*(1426085120*x^11+749251744*x^10+419191024*x^9-1430263104*x^8-715827880*x^7-369055228*x^6-352343296*x^5-222825800*x^4-155978060*x^3+356521280*x^2+189401930*x+105842255)/((x-1)*(x^2+x+1)*(2*x^3-1)*(2*x^3+1)*(4*x^3-1))
EXAMPLE
270798 (decimal) = 1002013032 -> 1002013032 + 2303102001 = 3311121033 = 1005135 (decimal).
MATHEMATICA
NestWhileList[# + IntegerReverse[#, 4] &, 270798, # !=
IntegerReverse[#, 4] &, 1, 23] (* Robert Price, Oct 18 2019 *)
PROG
(PARI) {m=270798; stop=20; c=0; while(c<stop, print1(k=m, ", "); rev=0; while(k>0, d=divrem(k, 4); k=d[1]; rev=4*rev+d[2]); c++; m=m+rev)}
CROSSREFS
Sequence in context: A203940 A139028 A249254 * A257647 A206001 A244561
KEYWORD
base,nonn
AUTHOR
Klaus Brockhaus, Sep 18 2002
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 23 15:19 EDT 2024. Contains 372763 sequences. (Running on oeis4.)