The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A076248 Trajectory of 1059831 under the Reverse and Add! operation carried out in base 4, written in base 10. 2
 1059831, 4728312, 7831065, 14433270, 24913965, 56412450, 92165625, 208908750, 396926625, 710289750, 1336954560, 1398889905, 2715199350, 5363547840, 5614238385, 10894222710, 21453945600, 21701687025, 43073052150 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS 1059831 = A075421(1105 ) is the fifth term of A075421 whose base 4 trajectory provably does not contain a palindrome. A proof along the lines of Klaus Brockhaus, On the 'Reverse and Add!' algorithm in base 2, can be based on the formula given below. LINKS Table of n, a(n) for n=0..18. Klaus Brockhaus, On the 'Reverse and Add!' algorithm in base 2 Index entries for sequences related to Reverse and Add! FORMULA a(0), ..., a(7) as above; for n > 7 and n = 2 (mod 6): a(n) = 5*4^(2*k+9)+3836395*4^k-15 where k = (n+4)/6; n = 3 (mod 6): a(n) = 10*4^(2*k+9)+2450070*4^k-10 where k = (n+3)/6; n = 4 (mod 6): a(n) = 20*4^(2*k+9)-326420*4^k where k = (n+2)/6; n = 5 (mod 6): a(n) = 20*4^(2*k+9)+3544540*4^k-15 where k = (n+1)/6; n = 0 (mod 6): a(n) = 40*4^(2*k+9)+1927800*4^k-10 where k = n/6; n = 1 (mod 6): a(n) = 80*4^(2*k+9)-322580*4^k where k = (n-1)/6. G.f.: -3*(668508000*x^19+444361200*x^18+222142800*x^17-528080680*x^16-356464620*x^15 -125753060*x^14-299532884*x^13-188180432*x^12-143040640*x^11+128992350*x^10+90219415*x^9 +38288125*x^8+28112975*x^7+6666425*x^6+5752375*x^5+424135*x^4+3044705*x^3+2610355*x^2 + 1576104*x+353277)/((x-1)*(x^2+x+1)*(2*x^3-1)*(2*x^3+1)*(4*x^3-1)) EXAMPLE 1059831 (decimal) = 10002233313 -> 10002233313 + 31333220001 = 102002113320 = 4728312 (decimal). MATHEMATICA NestWhileList[# + IntegerReverse[#, 4] &, 1059831, # != IntegerReverse[ #, 4] &, 1, 23] (* Robert Price, Oct 19 2019 *) PROG (PARI) {m=1059831; stop=19; c=0; while(c0, d=divrem(k, 4); k=d[1]; rev=4*rev+d[2]); c++; m=m+rev)} CROSSREFS Cf. A075421, A075153, A075466, A075467, A076247. Sequence in context: A162893 A234089 A076247 * A234776 A081638 A193054 Adjacent sequences: A076245 A076246 A076247 * A076249 A076250 A076251 KEYWORD base,nonn AUTHOR Klaus Brockhaus, Oct 03 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 15 11:51 EDT 2024. Contains 373407 sequences. (Running on oeis4.)