The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A076248 Trajectory of 1059831 under the Reverse and Add! operation carried out in base 4, written in base 10. 2
1059831, 4728312, 7831065, 14433270, 24913965, 56412450, 92165625, 208908750, 396926625, 710289750, 1336954560, 1398889905, 2715199350, 5363547840, 5614238385, 10894222710, 21453945600, 21701687025, 43073052150 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,1
COMMENTS
1059831 = A075421(1105 ) is the fifth term of A075421 whose base 4 trajectory provably does not contain a palindrome. A proof along the lines of Klaus Brockhaus, On the 'Reverse and Add!' algorithm in base 2, can be based on the formula given below.
LINKS
FORMULA
a(0), ..., a(7) as above; for n > 7 and n = 2 (mod 6): a(n) = 5*4^(2*k+9)+3836395*4^k-15 where k = (n+4)/6; n = 3 (mod 6): a(n) = 10*4^(2*k+9)+2450070*4^k-10 where k = (n+3)/6; n = 4 (mod 6): a(n) = 20*4^(2*k+9)-326420*4^k where k = (n+2)/6; n = 5 (mod 6): a(n) = 20*4^(2*k+9)+3544540*4^k-15 where k = (n+1)/6; n = 0 (mod 6): a(n) = 40*4^(2*k+9)+1927800*4^k-10 where k = n/6; n = 1 (mod 6): a(n) = 80*4^(2*k+9)-322580*4^k where k = (n-1)/6. G.f.: -3*(668508000*x^19+444361200*x^18+222142800*x^17-528080680*x^16-356464620*x^15 -125753060*x^14-299532884*x^13-188180432*x^12-143040640*x^11+128992350*x^10+90219415*x^9 +38288125*x^8+28112975*x^7+6666425*x^6+5752375*x^5+424135*x^4+3044705*x^3+2610355*x^2 + 1576104*x+353277)/((x-1)*(x^2+x+1)*(2*x^3-1)*(2*x^3+1)*(4*x^3-1))
EXAMPLE
1059831 (decimal) = 10002233313 -> 10002233313 + 31333220001 = 102002113320 = 4728312 (decimal).
MATHEMATICA
NestWhileList[# + IntegerReverse[#, 4] &, 1059831, # != IntegerReverse[ #, 4] &, 1, 23] (* Robert Price, Oct 19 2019 *)
PROG
(PARI) {m=1059831; stop=19; c=0; while(c<stop, print1(k=m, ", "); rev=0; while(k>0, d=divrem(k, 4); k=d[1]; rev=4*rev+d[2]); c++; m=m+rev)}
CROSSREFS
Sequence in context: A162893 A234089 A076247 * A234776 A081638 A193054
KEYWORD
base,nonn
AUTHOR
Klaus Brockhaus, Oct 03 2002
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 15 11:51 EDT 2024. Contains 373407 sequences. (Running on oeis4.)