The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A076247 Trajectory of 1059774 under the Reverse and Add! operation carried out in base 4, written in base 10. 2
 1059774, 4187583, 8355006, 20822715, 83391660, 144328605, 268919295, 1339676160, 1349598705, 2683144950, 5361370860, 9358549725, 17380163775, 85563883200, 89574690225, 173801637750, 343262166720, 359352580785 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS 1059774 = A075421(1096) is the fourth term of A075421 whose base 4 trajectory provably does not contain a palindrome. A proof along the lines of Klaus Brockhaus, On the 'Reverse and Add!' algorithm in base 2, can be based on the formula given below. - The generating function given describes the sequence from a(16) onward; the g.f. for the complete sequence is known but nearly twice as big. LINKS Table of n, a(n) for n=0..17. Klaus Brockhaus, On the 'Reverse and Add!' algorithm in base 2 Index entries for sequences related to Reverse and Add! FORMULA a(0), ..., a(15) as above; for n > 15 and n = 4 (mod 6): a(n) = 5*4^(2*k+12)-5237765*4^k where k = (n+2)/6; n = 5 (mod 6): a(n) = 5*4^(2*k+12)+246174955*4^k-15 where k = (n+1)/6; n = 0 (mod 6): a(n) = 10*4^(2*k+12)+157132950*4^k-10 where k = n/6; n = 1 (mod 6): a(n) = 20*4^(2*k+12)-20951060*4^k where k = (n-1)/6; n = 2 (mod 6): a(n) = 20*4^(2*k+12)+230461660*4^k-15 where k = (n-2)/6; n = 3 (mod 6): a(n) = 40*4^(2*k+12)+125706360*4^k-10 where k = (n-3)/6. G.f.: -15*(185397326496*x^11+95559181296*x^10+91268404224*x^9-183251937960*x^8-92341098492*x^7 -91268404224*x^6-48628806952*x^5-27174921532*x^4-22884144448*x^3+46483418410*x^2 +23956838719*x+22884144448)/((x-1)*(x^2+x+1)*(2*x^3-1)*(2*x^3+1)*(4*x^3-1)) EXAMPLE 1059774 (decimal) = 10002232332 -> 10002232332 + 23323220001 = 33332112333 = 4187583 (decimal). MATHEMATICA NestWhileList[# + IntegerReverse[#, 4] &, 1059774, # != IntegerReverse[#, 4] &, 1, 23] (* Robert Price, Oct 18 2019 *) PROG (PARI) {m=1059774; stop=19; c=0; while(c0, d=divrem(k, 4); k=d[1]; rev=4*rev+d[2]); c++; m=m+rev)} CROSSREFS Cf. A075421, A075153, A075466, A075467, A076248. Sequence in context: A043679 A162893 A234089 * A076248 A234776 A081638 Adjacent sequences: A076244 A076245 A076246 * A076248 A076249 A076250 KEYWORD base,nonn AUTHOR Klaus Brockhaus, Oct 03 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 12 19:52 EDT 2024. Contains 373360 sequences. (Running on oeis4.)