login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A359012
Numbers k that are a substring of xPy where k=concatenation(x,y) and xPy is the number of permutations A008279(x,y).
1
318, 557, 692, 729, 2226, 2437, 2776, 3209, 4436, 5336, 5549, 5718, 5956, 6068, 6141, 6353, 6958, 7045, 7046, 7338, 7345, 7643, 7865, 8261, 8409, 9153, 9178, 9242, 9544, 9569, 9664, 9894, 9999, 10174, 10889, 12389, 12434, 13497, 13516, 16308, 18695, 19707, 21940, 21954, 22535
OFFSET
1,1
COMMENTS
If n and d are two nonnegative integers, and d <= n, then the number of permutations is obtained by the formula nPd = n!/(n-d)!.
EXAMPLE
318 is present in 31P8 (= 318073392000 = A008279(31, 8)).
557 is present in 55P7 (= 1022755734000 = A008279(55, 7)).
692 is present in 69P2 (= 4692 = A008279(69, 2)).
PROG
(Python)
import math
def is_valid_sequence_number(n):
num_str = str(n)
length = len(num_str)
for count in range(math.ceil(length / 2), length):
if num_str in str(
math.perm(int(num_str[:count]), int(num_str[-(length - count) :]))
):
return True
return False
A359012 = []
for num in range(10, 10**4):
if is_valid_sequence_number(num):
A359012.append(num)
(PARI) T(n, k) = n!/(n-k)!; \\ A008279
isok(k) = my(d=digits(k), s=Str(k), d1, d2); for (i=1, #d-1, d1=fromdigits(Vec(d, i)); d2=fromdigits(vector(#d-i, k, d[i+k])); if ((d1 >= d2) && (#strsplit(Str(T(d1, d2)), s) > 1), return(1)); ); \\ Michel Marcus, Dec 12 2022
CROSSREFS
Cf. A008279.
Sequence in context: A323327 A323328 A045272 * A278131 A075153 A204835
KEYWORD
nonn,base
AUTHOR
John Samuel, Dec 11 2022
STATUS
approved