The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A323327 Numbers that start an unbounded aliquot-like sequence based on Dedekind psi function (A001615). 4
 318, 330, 498, 510, 534, 546, 636, 660, 786, 798, 942, 954, 978, 990, 996, 1020, 1068, 1092, 1110, 1122, 1254, 1272, 1320, 1398, 1410, 1470, 1494, 1506, 1518, 1530, 1572, 1596, 1602, 1614, 1626, 1638, 1734, 1884, 1908, 1938, 1950, 1956, 1980, 1992, 2040, 2046 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Let t(k) = psi(k) - k = A001615(k) - k be the sum of aliquot divisors d of k, such that k/d is squarefree. Penney & Pomerance proposed a problem to show that the aliquot-like sequence related to this function, i.e., the trajectory of an integer k under the repeated application of the map k -> t(k), can be unbounded. Since t(m^j * k) = m^j * t(k) if m|k, then if in the sequence a_0 = k, a_1 = t(k), a_2 = t(t(k)), ... there is a term a_{i1} = m^j * a_0 such that m|k and j > 0 then a_{i+i1} = m^j * a_i for all i and thus the sequence is unbounded. REFERENCES J.-M. De Koninck, Those Fascinating Numbers, Amer. Math. Soc., 2009, page 71, entry 318. LINKS Kevin Brown and Charles Vanden Eynden, Pseudo-aliquot Sequences, Solution to Problem 10323, The American Mathematical Monthly, Volume 103, No. 8 (1996), pp. 697-698. David E. Penney and Carl Pomerance, Problem 10323, The American Mathematical Monthly, Volume 100, No. 7 (1993), p. 688. Eric Weisstein's World of Mathematics, Aliquot Sequence. Wikipedia, Aliquot sequence. EXAMPLE 318 is in the sequence since t(318) = psi(318) - 318 = 330, t(330) = 534, etc., and this repeated mapping yields an unbounded sequence. MATHEMATICA t=0; t[n_] := (Times@@(1+1/Transpose[FactorInteger[n]][])-1)*n; rt[n_] := Module[{f=FactorInteger[n]}, e=GCD@@f[[;; , 2]]; Surd[n, e]]; divrootQ[n_, m_] := Divisible[n, rt[m]]; divQ[s_, n_] := If[n==0, 0, If[MemberQ[s, n], 1, If[ Length[Select[s, Divisible[n, #] && divrootQ[#, n/#] &]] > 0, 2, 3]]]; seqQ[n_] := Module[{n1=n}, s={}; While[divQ[s, n1] ==3, AppendTo[s, n1]; n1=t[n1]]; divQ[s, n1]] == 2; Select[Range, seqQ] CROSSREFS Cf. A001615, A098007, A187778. Sequence in context: A252246 A252254 A252247 * A323328 A045272 A278131 Adjacent sequences:  A323324 A323325 A323326 * A323328 A323329 A323330 KEYWORD nonn AUTHOR Amiram Eldar, Jan 11 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 19 22:12 EST 2022. Contains 350466 sequences. (Running on oeis4.)