|
|
A187778
|
|
Numbers k dividing psi(k), where psi is the Dedekind psi function (A001615).
|
|
4
|
|
|
1, 6, 12, 18, 24, 36, 48, 54, 72, 96, 108, 144, 162, 192, 216, 288, 324, 384, 432, 486, 576, 648, 768, 864, 972, 1152, 1296, 1458, 1536, 1728, 1944, 2304, 2592, 2916, 3072, 3456, 3888, 4374, 4608, 5184, 5832, 6144, 6912, 7776, 8748, 9216, 10368, 11664, 12288, 13122, 13824, 15552, 17496, 18432, 20736, 23328
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
This sequence is closed under multiplication.
Also 1 and the numbers where psi(n)/n = 2, or n/phi(n)=3, or psi(n)/phi(n)=6.
Also 1 and the numbers of the form 2^i*3^j with i, j >= 1 (A033845).
If M(n) is the n X n matrix whose elements m(i,j) = 2^i*3^j, with i, j >= 1, then det(M(n))=0.
Numbers n such that Product_{i=1..q} (1 + 1/d(i)) is an integer where q is the number of the distinct prime divisors d(i) of n. - Michel Lagneau, Jun 17 2016
|
|
REFERENCES
|
S. Ramanujan, Collected Papers, Ed. G. H. Hardy et al., Cambridge 1927; Chelsea, NY, 1962, p. xxiv.
|
|
LINKS
|
|
|
FORMULA
|
Sum_{n>0} 1/a(n)^k = 1 + Sum_{i>0} Sum_{j>0} 1/(2^i * 3^j)^k = 1 + 1/((2^k-1)*(3^k-1)).
|
|
EXAMPLE
|
psi(48) = 96 and 96/48 = 2 so 48 is in this sequence.
|
|
MATHEMATICA
|
Select[Range[10^4], #/EulerPhi[#]==3 || #==1&]
Join[{1}, 6 Select[Range@4000, Last@Map[First, FactorInteger@#]<=3 &]] (* Vincenzo Librandi, Jan 11 2019 *)
|
|
PROG
|
(PARI) dedekindpsi(n) = if( n<1, 0, direuler( p=2, n, (1 + X) / (1 - p*X)) [n]);
k=0; n=0; while(k<10000, n++; if( dedekindpsi(n) % n== 0, k++; print1(n, ", ")));
(Magma) [6*n: n in [1..3000] | PrimeDivisors(n) subset [2, 3]]; // Vincenzo Librandi, Jan 11 2019
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|