login
A075592
Numbers n such that number of distinct prime divisors of n is a divisor of n.
13
2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 36, 37, 38, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 56, 58, 59, 60, 61, 62, 64, 66, 67, 68, 71, 72, 73, 74, 76, 78, 79, 80, 81, 82, 83, 84, 86, 88, 89, 90
OFFSET
1,1
COMMENTS
Numbers n such that omega(n) divides n.
The asymptotic density of this sequence is 0 (Cooper and Kennedy, 1989). - Amiram Eldar, Jul 10 2020
LINKS
Christian N. K. Anderson, Table of n, a(n) for n = 1..10000
Curtis N. Cooper, Robert E. Kennedy, Chebyshev's inequality and natural density, Amer. Math. Monthly 96 (1989), no. 2, 118-124.
MATHEMATICA
Select[Range[2, 100], Divisible[#, Length[Select[Divisors[#], PrimeQ]]]&] (* Harvey P. Dale, Mar 17 2011 *)
PROG
(R) library(gmp); omega<-function(x) length(unique(as.numeric(factorize(x))))
which(c(F, vapply(2:100, function(n) isint(n/omega(n)), T))) # Christian N. K. Anderson, Apr 25 2013
(PARI) isok(n) = iferr(!(n % omega(n)), E, 0); \\ Michel Marcus, Oct 06 2017
CROSSREFS
Different from A070776: 78 belongs to this sequence but not to A070776.
Cf. A185307 (complement), A001221, A001222, A074946 (BigOmega(n) divides n).
Sequence in context: A317294 A095736 A004829 * A285801 A324109 A070776
KEYWORD
easy,nonn
AUTHOR
Amarnath Murthy, Sep 26 2002
EXTENSIONS
More terms from David Wasserman, Jan 20 2005
"Distinct" added to name by Christian N. K. Anderson, Apr 23 2013
STATUS
approved