login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers k that are a substring of xPy where k=concatenation(x,y) and xPy is the number of permutations A008279(x,y).
1

%I #35 Jan 06 2023 20:54:31

%S 318,557,692,729,2226,2437,2776,3209,4436,5336,5549,5718,5956,6068,

%T 6141,6353,6958,7045,7046,7338,7345,7643,7865,8261,8409,9153,9178,

%U 9242,9544,9569,9664,9894,9999,10174,10889,12389,12434,13497,13516,16308,18695,19707,21940,21954,22535

%N Numbers k that are a substring of xPy where k=concatenation(x,y) and xPy is the number of permutations A008279(x,y).

%C If n and d are two nonnegative integers, and d <= n, then the number of permutations is obtained by the formula nPd = n!/(n-d)!.

%e 318 is present in 31P8 (= 318073392000 = A008279(31, 8)).

%e 557 is present in 55P7 (= 1022755734000 = A008279(55, 7)).

%e 692 is present in 69P2 (= 4692 = A008279(69, 2)).

%o (Python)

%o import math

%o def is_valid_sequence_number(n):

%o num_str = str(n)

%o length = len(num_str)

%o for count in range(math.ceil(length / 2), length):

%o if num_str in str(

%o math.perm(int(num_str[:count]), int(num_str[-(length - count) :]))

%o ):

%o return True

%o return False

%o A359012 = []

%o for num in range(10, 10**4):

%o if is_valid_sequence_number(num):

%o A359012.append(num)

%o (PARI) T(n,k) = n!/(n-k)!; \\ A008279

%o isok(k) = my(d=digits(k), s=Str(k), d1, d2); for (i=1, #d-1, d1=fromdigits(Vec(d, i)); d2=fromdigits(vector(#d-i, k, d[i+k])); if ((d1 >= d2) && (#strsplit(Str(T(d1,d2)), s) > 1), return(1));); \\ _Michel Marcus_, Dec 12 2022

%Y Cf. A008279.

%K nonn,base

%O 1,1

%A _John Samuel_, Dec 11 2022