login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A255855
Least k > 0 such that gcd(k^n+5, (k+1)^n+5) > 1, or 0 if there is no such k.
4
1, 0, 1, 5, 1, 533360, 1, 55, 1, 7, 1, 796479131355665831357, 1, 41, 1, 5, 1, 3775, 1, 42296, 1, 7, 1, 653246700175064613889, 1, 21, 1, 5, 1, 1619, 1, 42842, 1, 7, 1, 2945, 1, 323371, 1, 5, 1, 1102221, 1, 633524110177, 1, 7, 1
OFFSET
0,4
COMMENTS
See A118119, which is the main entry for this class of sequences.
FORMULA
a(2k)=1 for k>=0, because gcd(1^(2k)+5,2^(2k)+5) = gcd(6,4^k-1) = 3.
EXAMPLE
For n=1, gcd(k^n+5, (k+1)^n+5) = gcd(k+5, k+6) = 1, therefore a(1)=0.
For n=2k, see formula.
For n=3, we have gcd(5^3+5, 6^3+5) = 13, and the pair (k,k+1)=(5,6) is the smallest which yields a GCD > 1, therefore a(3)=5.
MATHEMATICA
A255855[n_] := Module[{m = 1}, While[GCD[m^n + 5, (m + 1)^n + 5] <= 1, m++]; m]; Join[{1, 0}, Table[A255855[n], {n, 2, 10}]]
PROG
(PARI) a(n, c=5, L=10^7, S=1)->for(a=S, L, gcd(a^n+c, (a+1)^n+c)>1&&return(a))
(Python)
from sympy import primefactors, resultant, nthroot_mod
from sympy.abc import x
def A255855(n):
if n == 0: return 1
k = 0
for p in primefactors(resultant(x**n+5, (x+1)**n+5)):
for d in (a for a in sorted(nthroot_mod(-5, n, p, all_roots=True)) if pow(a+1, n, p)==-5%p):
k = min(d, k) if k else d
break
return int(k) # Chai Wah Wu, May 08 2024
KEYWORD
nonn,hard
AUTHOR
M. F. Hasler, Mar 08 2015
EXTENSIONS
a(11)-a(46) from Hiroaki Yamanouchi, Mar 12 2015
STATUS
approved