|
|
A255854
|
|
Least k > 0 such that gcd(k^n+4, (k+1)^n+4) > 1, or 0 if there is no such k.
|
|
4
|
|
|
1, 0, 8, 210, 1, 82, 128, 4763358550, 1, 22, 8, 4050643070777669523228, 1, 1010633974733, 7784, 100, 1, 26627469676193276478340, 8, 179, 1, 4082, 48, 1293523748876425462850, 1, 173, 8, 5, 1, 2423, 320, 342, 1, 1162, 8, 93, 1, 455207, 128, 22, 1, 11383, 8, 58768, 1, 91, 96, 306824898, 1, 187751, 8, 84, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
See A118119, which is the main entry for this class of sequences.
|
|
LINKS
|
|
|
FORMULA
|
a(4k)=1, a(8k+2)=8 (k>=0), cf. examples.
|
|
EXAMPLE
|
For n=1, gcd(k^n+4, (k+1)^n+4) = gcd(k+4, k+5) = 1, therefore a(1)=0.
For n=2, we have gcd(8^2+4, 9^2+4) = gcd(68, 85) = 17, and the pair (k,k+1)=(8,9) is the smallest with this property, therefore a(2)=8.
More generally, a(8k+2)=8 because gcd(8^(8k+2)+4, 9^(8k+2)+4) = gcd(64^(4k+1)+4, 81^(4k+1)+4) >= 17, since 64 = 81 = 13 (mod 17) and 13^4 = 1 (mod 17).
Also a(4k)=1, because gcd(1^(4k)+4, 2^(4k)+4) = gcd(5, 16^k-1) = 5.
|
|
MATHEMATICA
|
A255854[n_] := Module[{m = 1}, While[GCD[m^n + 4, (m + 1)^n + 4] <= 1, m++]; m]; Join[{1, 0}, Table[A255854[n], {n, 2, 6}]] (* Robert Price, Oct 15 2018 *)
|
|
PROG
|
(PARI) a(n, c=4, L=10^6, S=1)={n!=1 && for(a=S, L, gcd(a^n+c, (a+1)^n+c)>1&&return(a))}
(Python)
from sympy import primefactors, resultant, nthroot_mod
from sympy.abc import x
if n == 0: return 1
k = 0
for p in primefactors(resultant(x**n+4, (x+1)**n+4)):
for d in (a for a in sorted(nthroot_mod(-4, n, p, all_roots=True)) if pow(a+1, n, p)==-4%p):
k = min(d, k) if k else d
break
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|