|
|
A275286
|
|
a(n) = ((2n+1)!!)^2 * Sum_{k=0..n}(-1)^k/(2k+1)^2.
|
|
2
|
|
|
1, 8, 209, 10016, 822321, 98607816, 16772776929, 3755613340800, 1089481085841825, 392115220017568200, 173351482189397931825, 91513890536903699104800, 57296185618906061753900625, 41706416795344237885218165000, 35120660862575611007699136530625
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
|
|
FORMULA
|
a(0) = 1, a(n) = (2n+1)^2 * a(n-1) + (-1)^n / 4^n * ((2n+1)!)^2 / (n!)^2 / (2n+1)^2. - Daniel Suteu, Jul 21 2016
|
|
MATHEMATICA
|
Table[((2 n + 1)!!)^2 Sum[(-1)^k/(2 k + 1)^2, {k, 0, n}], {n, 0, 14}] (* Michael De Vlieger, Jul 21 2016 *)
|
|
PROG
|
(Sidef)
var k = 0
func a(n) { (-1)**n }
func b(n) { (2*n + 1)**2 }
func g((k)) { b(k) }
func g(n) is cached { b(n) * g(n-1) }
func f((k)) { a(k) }
func f(n) is cached { b(n)*f(n-1) + a(n)*g(n-1) }
for i in (k .. 20) { say f(i) }
(PARI) dfo(n) = (2*n)! / n! / 2^n; \\ after A001147
a(n) = dfo(n+1)^2*sum(k=0, n, (-1)^k/(2*k+1)^2); \\ Michel Marcus, Jul 25 2016
(Magma) [(Factorial(2*n+1)/(2^n*Factorial(n)))^2*(&+[(-1)^k/(2*k+1)^2: k in [0..n]]): n in [0..20]]; // G. C. Greubel, Aug 25 2018
|
|
CROSSREFS
|
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|