login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A275283
Number of set partitions of [2n] with symmetric block size list of length n.
4
1, 1, 3, 19, 171, 2066, 31346, 559987, 11954993, 282835456, 7785919355, 229359684137, 7731656573016, 272633076900991, 10876116332074739, 446659746000614675, 20580725671071449149, 964732749192326683508, 50418595763262446272127, 2656265906893413392905767
OFFSET
0,3
LINKS
FORMULA
a(n) = A275281(2n,n).
a(n) ~ c * n^(n-1/2) * d^n / (exp(n) * 2^(n-3/2)), where d = 5.99720652866734051428..., c = 0.331364442872654716... if n is even and c = 0.32118925729236323... if n is odd. - Vaclav Kotesovec, Aug 08 2016
EXAMPLE
a(0) = 1: {}.
a(1) = 1: 12.
a(2) = 3: 12|34, 13|24, 14|23.
a(3) = 19: 12|34|56, 12|35|46, 12|36|45, 13|24|56, 13|25|46, 13|26|45, 14|23|56, 1|2345|6, 1|2346|5, 15|23|46, 1|2356|4, 16|23|45, 14|25|36, 14|26|35, 15|24|36, 1|2456|3, 16|24|35, 15|26|34, 16|25|34.
MATHEMATICA
b[n_, s_] := b[n, s] = Expand[If[n>s, Binomial[n-1, n-s-1]*x, 1] + Sum[Binomial[n-1, j-1]*b[n-j, s+j]*Binomial[s+j-1, j-1], {j, 1, (n-s)/2}]*x^2];
T[n_] := T[n] = Function[p, Table[Coefficient[p, x, i], {i, 0, n}]][b[n, 0]];
a[n_] := T[2n][[n+1]];
a /@ Range[0, 20] (* Jean-François Alcover, Aug 21 2021, after Alois P. Heinz in A275281 *)
CROSSREFS
Bisection (even part) of A305197.
Cf. A275281.
Sequence in context: A143768 A256493 A353256 * A349768 A083071 A305459
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jul 21 2016
STATUS
approved