login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A275282
Number of set partitions of [n] with symmetric block size list.
2
1, 1, 2, 2, 7, 9, 47, 80, 492, 985, 7197, 16430, 139316, 361737, 3425683, 9939134, 103484333, 329541459, 3747921857, 12980700318, 159811532315, 598410986533, 7902918548186, 31781977111506, 447462660895105, 1920559118957107, 28699615818386524, 130838216971937408
OFFSET
0,3
LINKS
FORMULA
a(n) = Sum_{k=0..n} A275281(n,k).
EXAMPLE
a(3) = 2: 123, 1|2|3.
a(4) = 7: 1234, 12|34, 13|24, 14|23, 1|23|4, 1|24|3, 1|2|3|4.
a(5) = 9: 12345, 12|3|45, 13|2|45, 1|234|5, 1|235|4, 14|2|35, 1|245|3, 15|2|34, 1|2|3|4|5.
MAPLE
b:= proc(n, s) option remember; `if`(n>s,
binomial(n-1, n-s-1), 1) +add(binomial(n-1, j-1)*
b(n-j, s+j) *binomial(s+j-1, j-1), j=1..(n-s)/2)
end:
a:= n-> b(n, 0):
seq(a(n), n=0..30);
MATHEMATICA
b[n_, s_] := b[n, s] = If[n > s, Binomial[n-1, n-s-1], 1] + Sum[Binomial[n - 1, j - 1]*b[n - j, s + j]*Binomial[s + j - 1, j - 1], {j, 1, (n-s)/2}];
a[n_] := b[n, 0];
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, May 27 2018, from Maple *)
CROSSREFS
Row sums of A275281.
Sequence in context: A095021 A347913 A348532 * A307633 A101372 A133374
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jul 21 2016
STATUS
approved