login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A347913
a(n) is the number of multisets of integers that are possible to reach by starting with n occurrences of 0 and by splitting. Splitting is taking 2 occurrences of the same integer and incrementing one of them by 1 and decrementing the other occurrence by 1.
2
1, 1, 2, 2, 7, 9, 29, 47, 144, 264, 747, 1531, 4147, 9063, 23744, 54522, 140223, 332033, 845111, 2045007, 5176880, 12713772, 32115727, 79676437, 201227865, 502852973
OFFSET
0,3
COMMENTS
If the limit of a(n+1)/a(n) exists, then it is contained in the closed interval [2,6.75]. See Links for proof. Reverse splitting is defined in A348532.
EXAMPLE
For n = 5, the multisets are as follows:
{{0,0,0,0,0}} {{-1,0,0,0,1}} {{-1,-1,0,1,1}}
{{-1,-1,0,0,2}} {{-1,-1,-1,1,2}} {{-2,0,0,1,1}}
{{-2,0,0,0,2}} {{-2,-1,1,1,1}} {{-2,-1,0,1,2}}
Therefore, a(5) = 9.
For n = 6, the multisets are as follows:
{{0,0,0,0,0,0}} {{-1,0,0,0,0,1}} {{-1,-1,0,0,1,1}}
{{-1,-1,0,0,0,2}} {{-1,-1,-1,1,1,1}} {{-1,-1,-1,0,1,2}}
{{-2,0,0,0,1,1}} {{-2,0,0,0,0,2}} {{-2,-1,0,1,1,1}}
{{-2,-1,0,0,1,2}} {{-2,-1,-1,1,1,2}} {{-2,-1,-1,0,2,2}}
{{-2,-1,-1,0,1,3}} {{-2,-2,0,1,1,2}} {{-2,-2,0,0,2,2}}
{{-2,-2,0,0,1,3}} {{-2,-2,-1,1,2,2}} {{-2,-2,-1,1,1,3}}
{{-2,-2,-1,0,2,3}} {{-3,-1,0,1,1,2}} {{-3,-1,0,0,2,2}}
{{-3,-1,0,0,1,3}} {{-3,-1,-1,1,2,2}} {{-3,-1,-1,1,1,3}}
{{-3,-1,-1,0,2,3}} {{-3,-2,0,1,2,2}} {{-3,-2,0,1,1,3}}
{{-3,-2,0,0,2,3}} {{-3,-2,-1,1,2,3}}
Therefore, a(6) = 29.
MAPLE
b:= proc(p) option remember; {p, seq(`if`(coeff(p, x, i)>1,
b(expand((p-2*x^i+x^(i-1)+x^(i+1))*`if`(i=0, x, 1)
)), [])[], i=0..degree(p))}
end:
a:= n-> nops(b(n)):
seq(a(n), n=0..10); # Alois P. Heinz, Oct 07 2021
MATHEMATICA
b[p_] := b[p] = Union@Flatten@Join[{p}, Table[If[Coefficient[p, x, i] > 1, b[Expand[(p - 2*x^i + x^(i - 1) + x^(i + 1))*If[i == 0, x, 1]]]], {i, 0, Exponent[p, x]}]];
a[n_] := If[n == 0, 1, Length[b[n]] - 1];
Table[Print[n, " ", a[n]]; a[n], {n, 0, 14}] (* Jean-François Alcover, Jun 04 2022, after Alois P. Heinz *)
PROG
(Python)
def nextq(q):
used = set()
for i in range(len(q)-1):
for j in range(i+1, len(q)):
if q[i] == q[j]:
if q[i] in used: continue
used.add(q[i])
qc = list(q); qc[i] -= 1; qc[j] += 1
yield tuple(sorted(qc))
def a(n):
s = tuple(0 for i in range(n)); reach = {s}; expand = list(reach)
while len(expand) > 0:
q = expand.pop()
for qq in nextq(q):
if qq not in reach:
reach.add(qq)
if len(set(qq)) < len(qq):
expand.append(qq)
return len(reach)
print([a(n) for n in range(17)]) # Michael S. Branicky, Oct 10 2021
CROSSREFS
Cf. A348532.
Sequence in context: A267214 A107386 A095021 * A348532 A275282 A307633
KEYWORD
nonn,more
AUTHOR
Tejo Vrush, Oct 07 2021
EXTENSIONS
a(15)-a(22) from David A. Corneth, Oct 08 2021
a(23)-a(25) from Michael S. Branicky, Oct 12 2021
STATUS
approved