login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A347915
Expansion of e.g.f. Product_{k>=1} (1 + x^k)^exp(x).
3
1, 1, 4, 24, 150, 1235, 11725, 126987, 1512084, 20313897, 296921623, 4700713787, 80221988726, 1468879687145, 28661345212981, 594457831566757, 13027193829914920, 301079987772726257, 7318797530268562203, 186496088631167771143, 4971371842655844396298, 138384071439982000722737
OFFSET
0,3
FORMULA
E.g.f.: exp( exp(x) * Sum_{k>=1} A000593(k)*x^k/k ).
E.g.f.: exp( exp(x) * Sum_{k>=1} x^k/(k*(1 - x^(2*k))) ).
a(0) = 1; a(n) = Sum_{k=1..n} A354507(k) * binomial(n-1,k-1) * a(n-k). - Seiichi Manyama, Aug 16 2022
MATHEMATICA
nmax = 20; CoefficientList[Series[Product[(1 + x^k)^Exp[x], {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Aug 17 2022 *)
PROG
(PARI) N=40; x='x+O('x^N); Vec(serlaplace(prod(k=1, N, (1+x^k)^exp(x))))
(PARI) N=40; x='x+O('x^N); Vec(serlaplace(exp(exp(x)*sum(k=1, N, sigma(k>>valuation(k, 2))*x^k/k))))
(PARI) N=40; x='x+O('x^N); Vec(serlaplace(exp(exp(x)*sum(k=1, N, x^k/(k*(1-x^(2*k)))))))
(PARI) a354507(n) = n!*sum(k=1, n, sumdiv(k, d, (-1)^(k/d+1)*d)/(k*(n-k)!));
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, a354507(j)*binomial(i-1, j-1)*v[i-j+1])); v; \\ Seiichi Manyama, Aug 16 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Sep 18 2021
STATUS
approved