login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A305459 a(0) = 1, a(1) = 3, a(n) = 3*n*a(n-1) + a(n-2). 4
1, 3, 19, 174, 2107, 31779, 574129, 12088488, 290697841, 7860930195, 236118603691, 7799774851998, 281028013275619, 10967892292601139, 460932504302523457, 20752930585906156704, 996601600627798045249, 50847434562603606464403 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Let S(i,j,n) denote a sequence of the form a(0) = 1, a(1) = i, a(n) = i*n*a(n-1) + j*a(n-2). Then S(i,j,n) = Sum_{k=0..floor(n/2)} ((n-k)!/k!)*binomial(n-k,k)*i^(n-2*k)*j^k.

LINKS

Seiichi Manyama, Table of n, a(n) for n = 0..380

FORMULA

a(n) = Sum_{k=0..floor(n/2)} ((n-k)!/k!)*binomial(n-k,k)*3^(n-2*k).

a(n) ~ BesselI(0, 2/3) * n! * 3^n. - Vaclav Kotesovec, Jun 03 2018

MAPLE

a:=proc(n) option remember: if n=0 then 1 elif n=1 then 3 elif n>=2 then 3*n*procname(n-1)-procname(n-2) fi; end:

seq(a(n), n=0..20); # Muniru A Asiru, Jun 01 2018

MATHEMATICA

RecurrenceTable[{a[0]==1, a[1]==3, a[n]==3n a[n-1]+a[n-2]}, a, {n, 20}] (* Harvey P. Dale, Aug 27 2019 *)

PROG

(PARI) {a(n) = sum(k=0, n/2, ((n-k)!/k!)*binomial(n-k, k)*3^(n-2*k))}

(GAP) List([0..20], n->Sum([0..Int(n/2)], k->((Factorial(n-k))/(Factorial(k))*Binomial(n-k, k)*3^(n-2*k)))); # Muniru A Asiru, Jun 01 2018

CROSSREFS

Cf. A001040, A036243, A213190, A305460.

Sequence in context: A256493 A275283 A083071 * A045531 A129481 A276371

Adjacent sequences:  A305456 A305457 A305458 * A305460 A305461 A305462

KEYWORD

nonn

AUTHOR

Seiichi Manyama, Jun 01 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 30 18:07 EDT 2020. Contains 334728 sequences. (Running on oeis4.)