login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A276371
Expansion of e.g.f. exp(x/2)/(2 - exp(2*x))^(1/4).
4
1, 1, 3, 19, 177, 2161, 32643, 587539, 12273537, 291853441, 7782998883, 230028553459, 7462717994097, 263654454838321, 10075889406229923, 414147167601017779, 18217983822073897857, 853975145498805244801, 42495107452208870429763, 2237264405984004517212499, 124243242448367338311920817, 7258224393227482972980320881, 444967879322677755285771182403, 28563002475012109334240250609619
OFFSET
0,3
LINKS
FORMULA
E.g.f. A(x) satisfies: A'(x) = A(x)*(1 + A(x)^4)/2 with A(0)=1.
a(2*n) = 0 (mod 3), a(2*n+1) = 1 (mod 3), for n>=0.
a(n) ~ Gamma(3/4) * 2^n * n^(n-1/4) / (sqrt(Pi) * exp(n) * (log(2))^(n+1/4)). - Vaclav Kotesovec, Sep 11 2016
From Seiichi Manyama, Nov 16 2023: (Start)
a(n) = Sum_{k=0..n} (-2)^(n-k) * (Product_{j=0..k-1} (4*j+1)) * Stirling2(n,k).
a(0) = 1; a(n) = Sum_{k=1..n} (-2)^k * (3/2 * k/n - 2) * binomial(n,k) * a(n-k).
a(0) = 1; a(n) = a(n-1) + Sum_{k=1..n-1} 2^k * binomial(n-1,k) * a(n-k). (End)
EXAMPLE
E.g.f.: A(x) = 1 + x + 3*x^2/2! + 19*x^3/3! + 177*x^4/4! + 2161*x^5/5! + 32643*x^6/6! + 587539*x^7/7! + 12273537*x^8/8! + 291853441*x^9/9! + 7782998883*x^10/10! +...
such that A(x) = exp(x/2)/(2 - exp(2*x))^(1/4).
MATHEMATICA
With[{nn = 50}, CoefficientList[Series[Exp[x/2]/(2 - Exp[2*x])^(1/4), {x, 0, nn}], x] Range[0, nn]!] (* G. C. Greubel, Apr 09 2017 *)
PROG
(PARI) {a(n)=local(A=1+x, X=x+x*O(x^n)); A = exp(X/2)/(2-exp(2*X))^(1/4); n!*polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Cf. A124212.
Sequence in context: A305459 A045531 A129481 * A156131 A269421 A304578
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 09 2016
STATUS
approved