The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A305460 a(0) = 1, a(1) = 3, a(n) = 3*n*a(n-1) + 2*a(n-2). 3
 1, 3, 20, 186, 2272, 34452, 624680, 13187184, 317741776, 8605402320, 258797553152, 8557530058656, 308588677217920, 12052073471616192, 506804263162315904, 22830295989247448064, 1096867816010202138880, 55985919208498803979008 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Let S(i,j,n) denote a sequence of the form a(0) = 1, a(1) = i, a(n) = i*n*a(n-1) + j*a(n-2). Then S(i,j,n) = Sum_{k=0..floor(n/2)} ((n-k)!/k!)*binomial(n-k,k)*i^(n-2*k)*j^k. LINKS Seiichi Manyama, Table of n, a(n) for n = 0..380 FORMULA a(n) = Sum_{k=0..floor(n/2)} ((n-k)!/k!)*binomial(n-k,k)*3^(n-2*k)*2^k. a(n) ~ BesselI(0, 2*sqrt(2)/3) * n! * 3^n. - Vaclav Kotesovec, Jun 03 2018 MAPLE a:=proc(n) option remember: if n=0 then 1 elif n=1 then 3 elif n>=2 then 3*n*procname(n-1)+2*procname(n-2) fi; end: seq(a(n), n=0..20); # Muniru A Asiru, Jun 01 2018 PROG (PARI) {a(n) = sum(k=0, n/2, ((n-k)!/k!)*binomial(n-k, k)*3^(n-2*k)*2^k)} (GAP) List([0..20], n->Sum([0..Int(n/2)], k->((Factorial(n-k))/(Factorial(k))*Binomial(n-k, k)*3^(n-2*k)*2^k))); # Muniru A Asiru, Jun 01 2018 CROSSREFS Cf. A222467, A305459. Sequence in context: A212789 A065980 A302581 * A073767 A226349 A208975 Adjacent sequences:  A305457 A305458 A305459 * A305461 A305462 A305463 KEYWORD nonn AUTHOR Seiichi Manyama, Jun 01 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 17 19:57 EDT 2021. Contains 345085 sequences. (Running on oeis4.)