login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A226349
Number of functions f:{1,2,...,n} -> {1,2,...,n} such that the 1 and the 2 are in the same component of the functional digraph representation of f.
1
0, 0, 3, 20, 188, 2280, 33864, 595196, 12081600, 278122032, 7159299200, 203771364324, 6354217539072, 215429796291320, 7889813961243648, 310413633428119500, 13057068314325008384, 584737112800511959104, 27776659696045110558720, 1395009275793285886030772, 73854320834079368232960000
OFFSET
0,3
FORMULA
E.g.f. is the double integral of A''(x)*B(x) dx^2 where A(x) is the e.g.f. for A001865 and B(x) is the e.g.f. for A000312.
EXAMPLE
a(3)=20 because there are 17 connected functions on [3] and (2,1,3), (1,1,3), (2,2,3) where the functions are represented by their values.
MATHEMATICA
nn=18; t=Sum[n^(n-1)x^n/n!, {n, 1, nn+2}]; Join[{0, 0}, Range[0, nn]! CoefficientList[Series[D[D[Log[1/(1-t)], x], x]/(1-t), {x, 0, nn}], x]]
a[ n_] := If[ n < 2, 0, With[ {m = n - 2}, With[ {t = 1 + Sum[k^k x^k/k!, {k, m + 2}]}, m! SeriesCoefficient[ D[ Log[ t], {x, 2}] t, {x, 0, m} ]]]] (* Michael Somos, Jun 04 2013 *)
PROG
(PARI) {a(n) = local(A); if( n<2, 0, m = n-2; A = sum( k=0, m+2, k^k * x^k / k!, x^3 * O(x^m)); m! * polcoeff( log(A)'' * A, m))} /* Michael Somos, Jun 04 2013 */
CROSSREFS
Sequence in context: A302581 A305460 A073767 * A208975 A286794 A176043
KEYWORD
nonn
AUTHOR
Geoffrey Critzer, Jun 04 2013
STATUS
approved