The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A226347 Expansion of the unique normalized cusp form of Gamma_0(5) of weight 6 in powers of q. 1
1, 2, -4, -28, 25, -8, 192, -120, -227, 50, -148, 112, 286, 384, -100, 656, -1678, -454, 1060, -700, -768, -296, 2976, 480, 625, 572, 1880, -5376, -3410, -200, -2448, 5152, 592, -3356, 4800, 6356, 182, 2120, -1144, -3000, -9398, -1536, -1244, 4144, -5675 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
LINKS
FORMULA
Expansion of (eta(q) * eta(q^5))^7 / (eta(q^3) * eta(q^15)) + 9 * (eta(q) * eta(q^5))^5 * eta(q^3) * eta(q^15) + 27 * (eta(q) * eta(q^3) * eta(q^5) * eta(q^15))^3 in powers of q.
a(n) is multiplicative with a(p^e) = p^(2*e) if p=5, else a(p^e) = a(p) * a(p^(e-1)) - p^6 * a(p^(e-2)).
G.f. is a period 1 Fourier series which satisfies f(-1 / (5 t)) = 125 (t/i)^6 f(t) where q = exp(2 Pi i t).
a(5*n) = 25 * a(n) for all n in Z.
EXAMPLE
G.f. = q + 2*q^2 - 4*q^3 - 28*q^4 + 25*q^5 - 8*q^6 + 192*q^7 - 120*q^8 - 227*q^9 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ With[{A = QPochhammer[ q] QPochhammer[ q^5], B = QPochhammer[ q^3] QPochhammer[ q^15]}, With[{U = q A B, V = A^3/B}, U (V^2 + 9 U V + 27 U^2)]], {q, 0, n}];
a[ n_] := SeriesCoefficient[ With[{ V = q (QPochhammer[ q^5] / QPochhammer[ q])^6, U = q^3 (QPochhammer[ q] QPochhammer [q^5])^12}, Sqrt[ U (1/V + 22 + 125 V)]], {q, 0, n}]; (* Michael Somos, Dec 05 2014 *)
PROG
(PARI) {a(n) = my(A, u1, u3, u, v); if( n<1, 0, n--; A = x * O(x^n); u1 = eta(x + A) * eta(x^5 + A); u3 = eta(x^3 + A) * eta(x^15 + A); u = x * u1 * u3; v = u1^3 / u3; polcoeff( u * (v^2 + 9 * u*v + 27 * u^2), n))};
(Sage) CuspForms( Gamma0(5), 6, prec=45).0;
(Magma) Basis( CuspForms( Gamma0(5), 6), 46) [1]; /* Michael Somos, Nov 12 2014 */
CROSSREFS
Sequence in context: A256451 A059719 A264930 * A305738 A323447 A227303
KEYWORD
sign,mult
AUTHOR
Michael Somos, Jun 04 2013
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 18 03:36 EDT 2024. Contains 372618 sequences. (Running on oeis4.)