The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A226347 Expansion of the unique normalized cusp form of Gamma_0(5) of weight 6 in powers of q. 1
 1, 2, -4, -28, 25, -8, 192, -120, -227, 50, -148, 112, 286, 384, -100, 656, -1678, -454, 1060, -700, -768, -296, 2976, 480, 625, 572, 1880, -5376, -3410, -200, -2448, 5152, 592, -3356, 4800, 6356, 182, 2120, -1144, -3000, -9398, -1536, -1244, 4144, -5675 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS G. C. Greubel, Table of n, a(n) for n = 1..2500 FORMULA Expansion of (eta(q) * eta(q^5))^7 / (eta(q^3) * eta(q^15)) + 9 * (eta(q) * eta(q^5))^5 * eta(q^3) * eta(q^15) + 27 * (eta(q) * eta(q^3) * eta(q^5) * eta(q^15))^3 in powers of q. a(n) is multiplicative with a(p^e) = p^(2*e) if p=5, else a(p^e) = a(p) * a(p^(e-1)) - p^6 * a(p^(e-2)). G.f. is a period 1 Fourier series which satisfies f(-1 / (5 t)) = 125 (t/i)^6 f(t) where q = exp(2 Pi i t). a(5*n) = 25 * a(n) for all n in Z. EXAMPLE G.f. = q + 2*q^2 - 4*q^3 - 28*q^4 + 25*q^5 - 8*q^6 + 192*q^7 - 120*q^8 - 227*q^9 + ... MATHEMATICA a[ n_] := SeriesCoefficient[ With[{A = QPochhammer[ q] QPochhammer[ q^5], B = QPochhammer[ q^3] QPochhammer[ q^15]}, With[{U = q A B, V = A^3/B}, U (V^2 + 9 U V + 27 U^2)]], {q, 0, n}]; a[ n_] := SeriesCoefficient[ With[{ V = q (QPochhammer[ q^5] / QPochhammer[ q])^6, U = q^3 (QPochhammer[ q] QPochhammer [q^5])^12}, Sqrt[ U (1/V + 22 + 125 V)]], {q, 0, n}]; (* Michael Somos, Dec 05 2014 *) PROG (PARI) {a(n) = my(A, u1, u3, u, v); if( n<1, 0, n--; A = x * O(x^n); u1 = eta(x + A) * eta(x^5 + A); u3 = eta(x^3 + A) * eta(x^15 + A); u = x * u1 * u3; v = u1^3 / u3; polcoeff( u * (v^2 + 9 * u*v + 27 * u^2), n))}; (Sage) CuspForms( Gamma0(5), 6, prec=45).0; (Magma) Basis( CuspForms( Gamma0(5), 6), 46) [1]; /* Michael Somos, Nov 12 2014 */ CROSSREFS Sequence in context: A256451 A059719 A264930 * A305738 A323447 A227303 Adjacent sequences: A226344 A226345 A226346 * A226348 A226349 A226350 KEYWORD sign,mult AUTHOR Michael Somos, Jun 04 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 18 03:36 EDT 2024. Contains 372618 sequences. (Running on oeis4.)