login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A226350
Expansion of psi(x) * psi(-x^3) in powers of x where psi() is a Ramanujan theta function.
1
1, 1, 0, 0, -1, 0, 0, 0, 0, -2, 0, 0, -1, -1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, -1, 0, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 2, -1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, -2, 0, 0, 0, 0, -2, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, -2, 0
OFFSET
0,10
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
FORMULA
Expansion of q^(-1/2) * eta(q^2)^2 * eta(q^3) * eta(q^12) / (eta(q) * eta(q^6)) in powers of q.
Euler transform of period 12 sequence [ 1, -1, 0, -1, 1, -1, 1, -1, 0, -1, 1, -2, ...].
a(3*n + 2) = a(4*n + 2) = a(4*n + 3) = 0.
EXAMPLE
1 + x - x^4 - 2*x^9 - x^12 - x^13 + 2*x^21 - x^24 + 2*x^28 + 2*x^33 + ...
q + q^3 - q^9 - 2*q^19 - q^25 - q^27 + 2*q^43 - q^49 + 2*q^57 + 2*q^67 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, 0, q] EllipticTheta[ 2, Pi/4, q^3]/8^(1/2), {q, 0, 2 n + 1}]
PROG
(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^2 * eta(x^3 + A) * eta(x^12 + A) / (eta(x + A) * eta(x^6 + A)), n))}
CROSSREFS
Sequence in context: A354105 A370366 A342419 * A373898 A112609 A134363
KEYWORD
sign
AUTHOR
Michael Somos, Jun 04 2013
STATUS
approved