login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A226351
Number of ways to tile a fixed 3 X n square grid with 1 X 1, 2 X 2, and 1 X 2 tiles.
2
1, 3, 26, 163, 1125, 7546, 51055, 344525, 2326760, 15709977, 106079739, 716273960, 4836475953, 32657123299, 220509407586, 1488936665619, 10053686907525, 67885102598386, 458377829683919, 3095086053853821, 20898824215523616
OFFSET
0,2
FORMULA
Recurrence: a(n) = 4*a(n-1)+19*a(n-2)+a(n-3)-26*a(n-4)+a(n-5)+6*a(n-6) for n>5, a(0)=1, a(1)=3, a(2)=26, a(3)=163, a(4)=1125, a(5)=7546.
G.f.: (1-x-5*x^2+x^3+2*x^4)/(1-4*x-19*x^2-x^3+26*x^4-x^5-6*x^6).
MATHEMATICA
LinearRecurrence[{4, 19, 1, -26, 1, 6}, {1, 3, 26, 163, 1125, 7546}, 21] (* T. D. Noe, Jun 04 2013 *)
PROG
(Python)
# Depth-first search on 3 rows and n columns
# Produces "count" and the list "result[]"
# Omit the 2nd-last line if memory runs low
n=5; rows=3
count=0; result=[]
def f(b, row=0, col=-1):
global count
for i in range(row, len(b)):
for j in range((col+1 if i==row else 0), len(b[0])):
if b[i][j]==' ':
if i<len(b)-1:
if b[i+1][j]==' ':
f(b[:i]+[b[i][:j]+'^'+b[i][j+1:], b[i+1][:j]+'V'+b[i+1][j+1:]]+b[i+2:], i, j)
if j<len(b[0])-1:
if b[i][j+1]==' ' and b[i+1][j:j+2]==' ':
f(b[:i]+[b[i][:j]+'/\\'+b[i][j+2:], b[i+1][:j]+'\\/'+b[i+1][j+2:]]+b[i+2:], i, j)
if j<len(b[0])-1:
if b[i][j+1]==' ':
f(b[:i]+[b[i][:j]+'<>'+b[i][j+2:]]+b[i+1:], i, j)
count+=1
result.append(b) # omit this line
f([' '*n]*rows); print(count)
CROSSREFS
Cf. A226348.
Sequence in context: A252872 A121626 A038697 * A091262 A331862 A364634
KEYWORD
nonn,easy
AUTHOR
Andrew Woods, Jun 04 2013
STATUS
approved