login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A208975
G.f. satisfies: A(x) = 1 + x*A(x) * [d/dx x/A(x)^2].
3
1, 1, -3, 20, -189, 2232, -31130, 497016, -8907885, 176829104, -3849436062, 91187523000, -2335691914050, 64344487654800, -1897619527612692, 59667237154623280, -1993022006345620605, 70488571028815935072, -2631925423768158446390
OFFSET
0,3
LINKS
FORMULA
G.f. A(x) satisfies: [x^n] A(x)^(2*n-1) = [x^n] A(x)^(2*n) for n>=2.
G.f.: A(x) = -x/G(-x) where G(x) is the g.f. of A000699, the number of irreducible diagrams with 2n nodes.
a(n) ~ -(-1)^n * 2^(n + 3/2) * n^(n+1) / exp(n+1). - Vaclav Kotesovec, Nov 18 2017
EXAMPLE
G.f.: A(x) = 1 + x - 3*x^2 + 20*x^3 - 189*x^4 + 2232*x^5 - 31130*x^6 +...
Related expansion:
d/dx x/A(x)^2 = 1 - 4*x + 27*x^2 - 248*x^3 + 2830*x^4 - 38232*x^5 +...
Let G(x) be the g.f. of A000699:
G(x) = x + x^2 + 4*x^3 + 27*x^4 + 248*x^5 + 2830*x^6 + 38232*x^7 +...
then A(x) = -x/G(-x), or A(x) = 1 + x*A(x) * (x + G(-x))/x^2.
The coefficients in A(x)^n begin:
n=1: [1, 1, -3, 20, -189, 2232, -31130, 497016, -8907885, ...];
n=2: [1, 2, -5, 34, -329, 3966, -56262, 910820, -16509957, ...];
n=3: [1, 3,(-6),43, -429, 5289, -76350, 1253250, -22971165, ...];
n=4: [1, 4,(-6),48, -497, 6276, -92214, 1534560, -28436085, ...];
n=5: [1, 5, -5,(50),-540, 6991, -104555, 1763610, -33031335, ...];
n=6: [1, 6, -3,(50),-564, 7488, -113969, 1948038, -36867735, ...];
n=7: [1, 7, 0, 49,(-574),7812, -120960, 2094415, -40042233, ...];
n=8: [1, 8, 4, 48,(-574),8000, -125952, 2208384, -42639617, ...];
n=9: [1, 9, 9, 48, -567,(8082),-129300, 2294784, -44734032, ...];
n=10:[1,10, 15, 50, -555,(8082),-131300, 2357760, -46390320, ...];
n=11:[1,11, 22, 55, -539, 8019,(-132198),2400860, -47665200, ...];
n=12:[1,12, 30, 64, -519, 7908,(-132198),2427120, -48608304, ...];
n=13:[1,13, 39, 78, -494, 7761, -131469,(2439138),-49263084, ...];
n=14:[1,14, 49, 98, -462, 7588, -130151,(2439138),-49667604, ...];
n=15:[1,15, 60,125, -420, 7398, -128360, 2429025,(-49855230), ...];
n=16:[1,16, 72,160, -364, 7200, -126192, 2410432,(-49855230), ...];
where the coefficients in parenthesis demonstrate the property:
[x^n] A(x)^(2*n-1) = [x^n] A(x)^(2*n) for n>=2.
PROG
(PARI) {a(n)=local(A=1+x+x*O(x^n)); for(i=0, n, A=1+x*A*deriv(x/A^2)); polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
CROSSREFS
KEYWORD
sign
AUTHOR
Paul D. Hanna, Mar 03 2012
STATUS
approved