|
|
A103087
|
|
Numbers n such that 8*10^n + 6*R_n - 3 is prime, where R_n = 11...1 is the repunit (A002275) of length n.
|
|
1
|
|
|
0, 1, 2, 3, 13, 19, 62, 80, 126, 168, 195, 309, 410, 481, 608, 741, 879, 1176, 2688, 6236, 16294, 17317, 31574, 34861, 35392, 48726
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
COMMENTS
|
Also numbers n such that (26*10^n-11)/3 is prime.
a(27) > 10^5. - Robert Price, Oct 25 2015
|
|
LINKS
|
Table of n, a(n) for n=1..26.
Makoto Kamada, Prime numbers of the form 866...663.
Index entries for primes involving repunits.
|
|
FORMULA
|
a(n) = A101074(n-1) + 1, for n>1.
|
|
MATHEMATICA
|
Do[ If[ PrimeQ[(26*10^n - 11)/3], Print[n]], {n, 0, 10000}]
|
|
CROSSREFS
|
Cf. A002275, A101074.
Sequence in context: A194598 A080359 A193507 * A302485 A135118 A274905
Adjacent sequences: A103084 A103085 A103086 * A103088 A103089 A103090
|
|
KEYWORD
|
more,nonn
|
|
AUTHOR
|
Robert G. Wilson v, Jan 19 2005
|
|
EXTENSIONS
|
a(21)-a(22) from Kamada data by Robert Price, Dec 14 2010
a(23)-a(26) from Erik Branger May 01 2013 by Ray Chandler, Aug 16 2013
Inserted a(1)=0 by Robert Price, Oct 25 2015
|
|
STATUS
|
approved
|
|
|
|