login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A167660
Chocolate dove bar numerator: a(n) = (Sum_{k=0..floor(n/2)} k*binomial(n+k,k)*binomial(n,n-2*k)) + (Sum_{k=0..ceiling(n/2)} k*binomial(n+k-1,k-1)*binomial(n,n-2*k+1)).
1
0, 1, 5, 23, 104, 458, 1987, 8523, 36248, 153134, 643466, 2691926, 11220156, 46620412, 193190831, 798700531, 3295291440, 13571239766, 55801698214, 229113328722, 939486081152, 3847872039340, 15742988692542, 64347264994238
OFFSET
0,3
LINKS
D. M. Einstein, C. C. Heckman and T. S. Norfolk, On Sara's Dove Bar Habit
D. M. Einstein, C. C. Heckman, and T. S. Norfolk, On Sara's Dove Bar Habit, American Mathematical Monthly, Nov. 2009, p. 831.
FORMULA
Recurrence: 2*(n-2)*n*a(n) = (3*n^2 + 9*n - 28)*a(n-1) + 2*(9*n^2 - 33*n + 22)*a(n-2) + 4*(n-1)*(2*n-5)*a(n-3). - Vaclav Kotesovec, Oct 20 2012
a(n) ~ 4^n*sqrt(n)/(3*sqrt(Pi)). - Vaclav Kotesovec, Oct 20 2012
MATHEMATICA
a[n_]:= Sum[k*Binomial[n + k, k]*Binomial[n, n - 2*k], {k, 0, Floor[ n/2]}] + Sum[k*Binomial[n + k - 1, k - 1]* Binomial[n, n - 2*k + 1], {k, 0, Floor[(n + 1)/2]}]; Table[a[n], {n, 0, 30}]
PROG
(PARI) sum(k=0, n\2, k*binomial(n+k, k)*binomial(n, n-2*k)) + sum(k=0, (n+1)\2, k*binomial(n+k-1, k-1)*binomial(n, n-2*k+1))
CROSSREFS
The denominator is A000984.
Sequence in context: A218985 A129162 A377956 * A290924 A026760 A064914
KEYWORD
nonn,frac
AUTHOR
Roger L. Bagula, Nov 08 2009
EXTENSIONS
Edited by Charles R Greathouse IV, Nov 09 2009
STATUS
approved