login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A353628
Parity of A001001(n), where A001001(n) = Sum_{d|n} d*sigma(d).
5
1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0
OFFSET
1
COMMENTS
See discussion at A209635.
FORMULA
a(n) = A000035(A001001(n)).
a(n) = a(2n) = a(A000265(n)).
a(n) >= A353627(n).
Multiplicative with a(p^e) = A000035(((p^(e+1)-1)(p^(e+2)-1)) / ((p-1)(p^2-1))). - Antti Karttunen, Dec 20 2022
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi^2/12 = 0.822467... (A072691). - Amiram Eldar, Oct 23 2023
MATHEMATICA
f[p_, e_] := Mod[Product[(p^(e + k) - 1)/(p^k - 1), {k, 1, 2}], 2]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Oct 23 2023 *)
PROG
(PARI)
A001001(n) = sumdivmult(n, d, sigma(d)*d); \\ From A001001
A353628(n) = (A001001(n)%2);
(PARI) A353628(n) = { my(f = factor(n)); prod(k=1, #f~, my(p=f[k, 1], e=f[k, 2]); (((p^(e+1)-1)*(p^(e+2)-1)) / ((p-1)*(p^2-1)))%2); }; \\ Antti Karttunen, Dec 20 2022
CROSSREFS
Characteristic function of A353511.
Differs from A353627 at the positions given by A353456.
Cf. A000035, A000265, A001001 (inverse Möbius transform of A064987), A072691, A209635.
Sequence in context: A209635 A355689 A353627 * A359551 A353458 A110242
KEYWORD
nonn,mult
AUTHOR
Antti Karttunen, May 03 2022
EXTENSIONS
Keyword:mult added by Antti Karttunen, Dec 20 2022
STATUS
approved