login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Parity of A001001(n), where A001001(n) = Sum_{d|n} d*sigma(d).
5

%I #21 Oct 23 2023 02:02:08

%S 1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,0,1,0,1,1,1,1,1,1,1,

%T 1,0,1,1,1,1,1,1,1,1,0,1,1,1,0,0,1,1,1,0,1,1,1,1,1,1,1,1,0,1,1,1,1,1,

%U 1,1,1,0,1,1,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,0,0,0,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,0,1,1,1,0

%N Parity of A001001(n), where A001001(n) = Sum_{d|n} d*sigma(d).

%C See discussion at A209635.

%H Antti Karttunen, <a href="/A353628/b353628.txt">Table of n, a(n) for n = 1..65537</a>

%H <a href="/index/Ch#char_fns">Index entries for characteristic functions</a>

%F a(n) = A000035(A001001(n)).

%F a(n) = a(2n) = a(A000265(n)).

%F a(n) >= A353627(n).

%F Multiplicative with a(p^e) = A000035(((p^(e+1)-1)(p^(e+2)-1)) / ((p-1)(p^2-1))). - _Antti Karttunen_, Dec 20 2022

%F Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi^2/12 = 0.822467... (A072691). - _Amiram Eldar_, Oct 23 2023

%t f[p_, e_] := Mod[Product[(p^(e + k) - 1)/(p^k - 1), {k, 1, 2}], 2]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* _Amiram Eldar_, Oct 23 2023 *)

%o (PARI)

%o A001001(n) = sumdivmult(n, d, sigma(d)*d); \\ From A001001

%o A353628(n) = (A001001(n)%2);

%o (PARI) A353628(n) = { my(f = factor(n)); prod(k=1, #f~, my(p=f[k, 1], e=f[k, 2]); (((p^(e+1)-1)*(p^(e+2)-1)) / ((p-1)*(p^2-1)))%2); }; \\ _Antti Karttunen_, Dec 20 2022

%Y Characteristic function of A353511.

%Y Differs from A353627 at the positions given by A353456.

%Y Cf. A000035, A000265, A001001 (inverse Möbius transform of A064987), A072691, A209635.

%K nonn,mult

%O 1

%A _Antti Karttunen_, May 03 2022

%E Keyword:mult added by _Antti Karttunen_, Dec 20 2022