login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A355689
Dirichlet inverse of A166486, characteristic function of numbers that are not multiples of 4.
14
1, -1, -1, 1, -1, 1, -1, -1, 0, 1, -1, -1, -1, 1, 1, 1, -1, 0, -1, -1, 1, 1, -1, 1, 0, 1, 0, -1, -1, -1, -1, -1, 1, 1, 1, 0, -1, 1, 1, 1, -1, -1, -1, -1, 0, 1, -1, -1, 0, 0, 1, -1, -1, 0, 1, 1, 1, 1, -1, 1, -1, 1, 0, 1, 1, -1, -1, -1, 1, -1, -1, 0, -1, 1, 0, -1, 1, -1, -1, -1, 0, 1, -1, 1, 1, 1, 1, 1, -1, 0, 1, -1, 1, 1, 1, 1, -1, 0, 0, 0, -1, -1, -1, 1, -1, 1, -1, 0
OFFSET
1
COMMENTS
From Antti Karttunen, Dec 31 2022: (Start)
Note the correspondences between four sequences:
A355689 --- abs ---> A353627
^ ^
| |
inv inv
| |
v v
A166486 <--- abs --- A358839
Here inv means that the sequences are Dirichlet Inverses of each other, and abs means taking absolute values.
(End)
LINKS
FORMULA
a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, d<n} A166486(n/d) * a(d).
From Antti Karttunen, Dec 22, Dec 31 2022: (Start)
Multiplicative with a(2^e) = (-1)^e, and for odd primes p, a(p^e) = -1 if e = 1, otherwise 0.
For all e >= 0, a(2^e) = A008836(2^e).
For all n >= 0, a(2n+1) = A008683(2n+1).
a(n) = A359156(n) - A359158(n).
(End)
Dirichlet g.f.: 4^s/((4^s-1)*zeta(s)). - Amiram Eldar, Dec 30 2022
MATHEMATICA
f[p_, e_] := If[e == 1, -1, 0]; f[2, e_] := (-1)^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Dec 30 2022 *)
PROG
(PARI)
A166486(n) = !!(n%4);
memoA355689 = Map();
A355689(n) = if(1==n, 1, my(v); if(mapisdefined(memoA355689, n, &v), v, v = -sumdiv(n, d, if(d<n, A166486(n/d)*A355689(d), 0)); mapput(memoA355689, n, v); (v)));
(PARI) A355689(n) = { my(f = factor(n)); prod(k=1, #f~, if(2==f[k, 1], (-1)^f[k, 2], -(1==f[k, 2]))); }; \\ Antti Karttunen, Dec 22 2022
CROSSREFS
Cf. A008683, A008836, A166486 (Dirichlet inverse), A353627 (absolute values), A358839 (their Dirichlet inverse), A359157 (positions of the positive terms), A359159 (of the negative terms), A359156, A359158.
Cf. also A087003, A355688, A355690.
Sequence in context: A340374 A070887 A209635 * A353627 A353628 A359551
KEYWORD
sign,mult
AUTHOR
Antti Karttunen, Jul 15 2022
STATUS
approved