login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A355691
Dirichlet inverse of A320111, number of divisors of n that are not of the form 4k+2.
2
1, -1, -2, -1, -2, 2, -2, 0, 1, 2, -2, 2, -2, 2, 4, 1, -2, -1, -2, 2, 4, 2, -2, 0, 1, 2, 0, 2, -2, -4, -2, 1, 4, 2, 4, -1, -2, 2, 4, 0, -2, -4, -2, 2, -2, 2, -2, -2, 1, -1, 4, 2, -2, 0, 4, 0, 4, 2, -2, -4, -2, 2, -2, 0, 4, -4, -2, 2, 4, -4, -2, 0, -2, 2, -2, 2, 4, -4, -2, -2, 0, 2, -2, -4, 4, 2, 4, 0, -2, 2, 4, 2, 4, 2, 4, -2, -2, -1, -2, -1, -2, -4, -2, 0, -8
OFFSET
1,3
COMMENTS
Multiplicative because A320111 is.
LINKS
FORMULA
a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, d<n} A320111(n/d) * a(d).
Multiplicative with a(2^e) = A010892(e+2) and for a prime p > 2, a(p) = -2, a(p^2) = 1 and a(p^e) = 0 when e > 2. - Sebastian Karlsson, Oct 21 2022
Dirichlet g.f.: 4^s/(zeta(s)^2*(1 - 2^s + 4^s)). - Amiram Eldar, Dec 30 2022
MATHEMATICA
f[2, e_] := Switch[Mod[e, 6], 0, 0, 1, -1, 2, -1, 3, 0, 4, 1, 5, 1]; f[p_, 1] = -2; f[p_, 2] = 1; f[p_, e_] := 0; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Dec 30 2022 *)
PROG
(PARI)
A320111(n) = sumdiv(n, d, (2!=(d%4)));
memoA355691 = Map();
A355691(n) = if(1==n, 1, my(v); if(mapisdefined(memoA355691, n, &v), v, v = -sumdiv(n, d, if(d<n, A320111(n/d)*A355691(d), 0)); mapput(memoA355691, n, v); (v)));
CROSSREFS
Cf. A320111.
Cf. also A355690.
Cf. A010892.
Sequence in context: A171683 A249130 A134997 * A337474 A104605 A300953
KEYWORD
sign,mult
AUTHOR
Antti Karttunen, Jul 15 2022
STATUS
approved