login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A320111
Number of divisors d of n that are not of the form 4k+2.
19
1, 1, 2, 2, 2, 2, 2, 3, 3, 2, 2, 4, 2, 2, 4, 4, 2, 3, 2, 4, 4, 2, 2, 6, 3, 2, 4, 4, 2, 4, 2, 5, 4, 2, 4, 6, 2, 2, 4, 6, 2, 4, 2, 4, 6, 2, 2, 8, 3, 3, 4, 4, 2, 4, 4, 6, 4, 2, 2, 8, 2, 2, 6, 6, 4, 4, 2, 4, 4, 4, 2, 9, 2, 2, 6, 4, 4, 4, 2, 8, 5, 2, 2, 8, 4, 2, 4, 6, 2, 6, 4, 4, 4, 2, 4, 10, 2, 3, 6, 6, 2, 4, 2, 6, 8
OFFSET
1,3
COMMENTS
Inverse Möbius transform of A152822.
LINKS
Matjaž Konvalinka and Vasu Tewari, Some natural extensions of the parking space, arXiv:2003.04134 [math.CO], 2020.
FORMULA
a(n) = Sum_{d|n, d == 0, 1 or 3 mod 4} 1.
Multiplicative with a(2^e) = e, a(p^e) = (e+1) for odd primes p.
a(2n) = A000005(n), a(2n+1) = A000005(2n+1).
a(n) = A000005(A252463(n)).
a(1) = a(2) = 1; for n > 2, a(n) = A001511(A252463(n)) * a(A000265(A252463(n))).
From Amiram Eldar, Dec 30 2022: (Start)
Dirichlet g.f.: zeta(s)^2*(1 - 1/2^s + 1/4^s).
Sum_{k=1..n} a(k) ~ (3/4)*n*(log(n) + 2*gamma - 1), where gamma is Euler's constant (A001620). (End)
MATHEMATICA
Array[DivisorSum[#, 1 &, Mod[#, 4] != 2 &] &, 105] (* Michael De Vlieger, Jun 16 2020 *)
f[2, e_] := e; f[p_, e_] := e + 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Dec 30 2022 *)
PROG
(PARI) A320111(n) = sumdiv(n, d, (2!=(d%4)));
(PARI) A320111(n) = {my(f); f = factor(n); for(i=1, #f~, if(f[i, 1]>2, f[i, 2]++)); factorback(f[, 2])};
(PARI)
A064989(n) = {my(f); f = factor(n); if((n>1 && f[1, 1]==2), f[1, 2] = 0); for (i=1, #f~, f[i, 1] = precprime(f[i, 1]-1)); factorback(f)};
A252463(n) = if(!(n%2), n/2, A064989(n));
A320111(n) = numdiv(A252463(n));
(PARI)
\\ A252463 given above
A001511(n) = 1+valuation(n, 2);
A000265(n) = (n>>valuation(n, 2));
A320111(n) = if(n<=2, 1, my(p=A252463(n)); A001511(p)*A320111(A000265(p)));
(Python)
from sympy import divisor_count
def A320111(n): return divisor_count(n if n&1 else n>>1) # Chai Wah Wu, Jul 13 2022
CROSSREFS
KEYWORD
nonn,mult
AUTHOR
Antti Karttunen, Nov 22 2018
STATUS
approved