login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A171683
Triangle T(n,k) which contains 4*n!*2^floor((n+1)/2) times the coefficient [t^n x^k] exp(t*x)/(3 + exp(2*t)) in row n, column k.
1
1, -1, 2, -1, -2, 2, 1, -6, -6, 4, 10, 4, -12, -8, 4, 26, 100, 20, -40, -20, 8, -154, 156, 300, 40, -60, -24, 8, -1646, -2156, 1092, 1400, 140, -168, -56, 16, 1000, -13168, -8624, 2912, 2800, 224, -224, -64, 16, 92744, 18000, -118512, -51744, 13104, 10080, 672, -576, -144, 32
OFFSET
0,3
COMMENTS
The bivariate Taylor expansion of exp(t*x)/(3+exp(2*t)) is 1/4 + (x/4-1/8)*t +(-1/16+x^2/8-x/8)*t^2+...
Row n contains the coefficients of [x^k] of the polynomial in front of t^n, multiplied by 4*floor((n+1)/2)*n!.
Row sums are: 1, 1, -1, -7, -2, 94, 266, -1378, -15128, -36344, 839144,...
EXAMPLE
The triangle starts in row n=0, columns 0<=k <=n as
1;
-1, 2;
-1, -2, 2;
1, -6, -6, 4;
10, 4, -12, -8, 4;
26, 100, 20, -40, -20, 8;
-154, 156, 300, 40, -60, -24, 8;
-1646, -2156, 1092, 1400, 140, -168, -56, 16;
1000, -13168, -8624, 2912, 2800, 224, -224, -64, 16;
92744, 18000, -118512, -51744, 13104, 10080, 672, -576, -144, 32;
...
MATHEMATICA
Clear[p, g, m, a];
m = 1;
p[t_] = 2^(m + 1)*Exp[t*x]/(-1 + 2^(m + 1) + Exp[2^m*t]) Table[ FullSimplify[ExpandAll[2^ Floor[(n + 1)/2]*n!*SeriesCoefficient[ Series[p[t], {t, 0, 30}], n]]], {n, 0, 10}]
a = Table[CoefficientList[FullSimplify[ExpandAll[2^Floor[(n + 1)/2]*n!*SeriesCoefficient[ Series[p[t], {t, 0, 30}], n]]], x], {n, 0, 10}]
Flatten[a]
CROSSREFS
KEYWORD
sign,tabl
AUTHOR
Roger L. Bagula, Dec 15 2009
EXTENSIONS
Number of variables in use reduced from 4 to 2, keyword:tabl added - The Assoc. Eds. of the OEIS, Oct 20 2010
STATUS
approved