login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A171681
a(n) = F(2n+1)^3 - F(3n)^2 - F(6n-2), where the F(i) are Fibonacci numbers.
1
1, 6, 54, 857, 15058, 269394, 4831929, 86699846, 1555750918, 27916779057, 500946173586, 8989114087586, 161303106727729, 2894466805243782, 51939099383032278, 932009322077220809, 16724228697975221074
OFFSET
1,2
COMMENTS
The ratio of two consecutive terms of this sequence, as n goes to infinity, is phi^6 = 8*phi+5 = 9+4*sqrt(5) where phi is the golden ratio=1.618...
FORMULA
a(n) = 20*a(n-1) - 35*a(n-2) - 35*a(n-3) + 20*a(n-4) - a(n-5). - R. J. Mathar, Nov 23 2010
G.f.: x*(1-14*x-31*x^2+22*x^3-2*x^4) / ((1+x)*(x^2-3*x+1)*(x^2-18*x+1)).
a(n+1) = (-2*(-1)^n + A134493(n+1) + 3*A001519(n+2))/5. - R. J. Mathar, Nov 23 2010
EXAMPLE
d(3) = 54 since F(7)^3 = F(9)^2 + F(16) + 54.
MATHEMATICA
Table[(1/5)*(3*Fibonacci[2*n + 1] + Fibonacci[6*n - 5] + 2*(-1)^n), {n, 1, 10}] (* G. C. Greubel, Apr 18 2016 *)
LinearRecurrence[{20, -35, -35, 20, -1}, {1, 6, 54, 857, 15058}, 20] (* Harvey P. Dale, Dec 15 2017 *)
CROSSREFS
Sequence in context: A360545 A217238 A378026 * A267837 A049037 A047681
KEYWORD
nonn,easy
AUTHOR
Carmine Suriano, Dec 15 2009
EXTENSIONS
Simplified the definition. - N. J. A. Sloane, Nov 24 2010
STATUS
approved