login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A355688
Dirichlet inverse of A354354, characteristic function of numbers that are neither multiples of 2 nor 3.
5
1, 0, 0, 0, -1, 0, -1, 0, 0, 0, -1, 0, -1, 0, 0, 0, -1, 0, -1, 0, 0, 0, -1, 0, 0, 0, 0, 0, -1, 0, -1, 0, 0, 0, 1, 0, -1, 0, 0, 0, -1, 0, -1, 0, 0, 0, -1, 0, 0, 0, 0, 0, -1, 0, 1, 0, 0, 0, -1, 0, -1, 0, 0, 0, 1, 0, -1, 0, 0, 0, -1, 0, -1, 0, 0, 0, 1, 0, -1, 0, 0, 0, -1, 0, 1, 0, 0, 0, -1, 0, 1, 0, 0, 0, 1, 0, -1, 0, 0, 0, -1, 0, -1, 0, 0, 0, -1, 0
OFFSET
1
COMMENTS
Multiplicative because A354354 is.
LINKS
FORMULA
a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, d<n} A354354(n/d) * a(d).
a(n) = A008683(n) * A354354(n). [As the latter is fully multiplicative] - Antti Karttunen, Dec 20 2022
From Amiram Eldar, Dec 27 2022: (Start)
Multiplicative with a(p^e) = 0 if p <= 3 or e >= 2, and -1 otherwise.
Dirichlet g.f.: (2^s)*(3^s)/(zeta(s)*(2^s-1)*(3^s-1)). (End)
MATHEMATICA
a[n_] := If[GCD[n, 6] == 1, MoebiusMu[n], 0]; Array[a, 100] (* Amiram Eldar, Dec 27 2022 *)
PROG
(PARI)
A354354(n) = ((n%2)&&(n%3));
memoA355688 = Map();
A355688(n) = if(1==n, 1, my(v); if(mapisdefined(memoA355688, n, &v), v, v = -sumdiv(n, d, if(d<n, A354354(n/d)*A355688(d), 0)); mapput(memoA355688, n, v); (v)));
(PARI) A355688(n) = (moebius(n)*A354354(n)); \\ Antti Karttunen, Dec 20 2022
CROSSREFS
Cf. also A355689, A355690.
Sequence in context: A104108 A267056 A089024 * A373154 A353488 A232991
KEYWORD
sign,mult
AUTHOR
Antti Karttunen, Jul 15 2022
STATUS
approved