login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A373154
a(n) = 1 if 6*n is squarefree, otherwise 0.
1
1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0
OFFSET
1
FORMULA
Multiplicative with a(p^e) = 0 if p <= 3 or e >= 2, and 1 otherwise.
a(n) = A008966(A008588(n)) = A008966(n) * A354354(n).
a(n) = abs(A355688(n)) = A355688(n) mod 2.
From Amiram Eldar, May 29 2024: (Start)
Dirichlet g.f.: (2^s/(2^s+1)) * (3^s/(3^s+1)) * zeta(s)/zeta(2*s).
Sum_{k=1..n} a(k) ~ (3/Pi^2) * n. (End)
MATHEMATICA
a[n_] := If[SquareFreeQ[6*n], 1, 0]; Array[a, 100] (* Amiram Eldar, May 29 2024 *)
PROG
(PARI) A373154(n) = issquarefree(6*n);
(PARI) A373154(n) = { my(f = factor(n)); prod(k=1, #f~, f[k, 2] < (2-(f[k, 1]<=3))); };
CROSSREFS
Characteristic function of A276378.
Absolute values and also parity of A355688.
Sequence in context: A267056 A089024 A355688 * A353488 A232991 A168553
KEYWORD
nonn,easy,mult
AUTHOR
Antti Karttunen, May 28 2024
STATUS
approved