login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A355690
Dirichlet inverse of A152822, where A152822 is the characteristic function of numbers not congruent to 2 mod 4.
8
1, 0, -1, -1, -1, 0, -1, -1, 0, 0, -1, 1, -1, 0, 1, 0, -1, 0, -1, 1, 1, 0, -1, 1, 0, 0, 0, 1, -1, 0, -1, 1, 1, 0, 1, 0, -1, 0, 1, 1, -1, 0, -1, 1, 0, 0, -1, 0, 0, 0, 1, 1, -1, 0, 1, 1, 1, 0, -1, -1, -1, 0, 0, 1, 1, 0, -1, 1, 1, 0, -1, 0, -1, 0, 0, 1, 1, 0, -1, 0, 0, 0, -1, -1, 1, 0, 1, 1, -1, 0, 1, 1, 1, 0, 1, -1, -1, 0, 0, 0, -1, 0, -1, 1, -1, 0, -1, 0
OFFSET
1
COMMENTS
Multiplicative because A152822 is.
LINKS
FORMULA
a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, d<n} A152822(n/d) * a(d).
Multiplicative with a(2^e) = A010892(1+e), and for odd primes p, a(p^e) = -1 if e = 1, otherwise 0. - Antti Karttunen, Dec 23 2022
a(n) = A359605(n) - A359606(n). - Antti Karttunen, Jan 12 2023
PROG
(PARI)
A152822(n) = (2!=(n%4));
memoA355690 = Map();
A355690(n) = if(1==n, 1, my(v); if(mapisdefined(memoA355690, n, &v), v, v = -sumdiv(n, d, if(d<n, A152822(n/d)*A355690(d), 0)); mapput(memoA355690, n, v); (v)));
(PARI)
A010892(n) = ([1, 1, 0, -1, -1, 0][n%6 + 1]);
A355690(n) = { my(f = factor(n)); prod(k=1, #f~, if(2==f[k, 1], A010892(1+f[k, 2]), -(1==f[k, 2]))); }; \\ Antti Karttunen, Dec 23 2022
CROSSREFS
Cf. A010892, A042965, A152822, A359590 (absolute values), A359605, A359606.
Cf. also A355688, A355689, A355691.
Sequence in context: A070749 A285341 A059778 * A359590 A104521 A317198
KEYWORD
sign,mult,easy
AUTHOR
Antti Karttunen, Jul 15 2022
STATUS
approved