OFFSET
1
COMMENTS
Sequence gives the absolute values of A209635. See discussion there.
From Antti Karttunen, Dec 30 2022: (Start)
Note the correspondences between four sequences:
^ ^
| |
inv inv
| |
v v
Here inv means that the sequences are Dirichlet Inverses of each other, and abs means taking absolute values.
(End)
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..65537
FORMULA
Multiplicative with a(2^e) = 1, and for odd primes p, a(p^e) = 1 if e = 1 and 0 if e > 1.
a(n) >= A323239(n).
a(n) >= A336477(n).
a(n) <= A353628(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 8/Pi^2 (A217739). - Amiram Eldar, Jul 23 2022
Dirichlet g.f.: zeta(s)/(zeta(2*s)*(1-1/4^s)). - Amiram Eldar, Jan 01 2023
MATHEMATICA
a[n_] := If[SquareFreeQ[n/2^IntegerExponent[n, 2]], 1, 0]; Array[a, 100] (* Amiram Eldar, Jul 23 2022 *)
PROG
(PARI) A353627(n) = issquarefree(n>>valuation(n, 2));
CROSSREFS
KEYWORD
nonn,mult
AUTHOR
Antti Karttunen, May 02 2022
STATUS
approved