login
A353627
a(n) = 1 if the odd part of n is squarefree, otherwise 0.
21
1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0
OFFSET
1
COMMENTS
Sequence gives the absolute values of A209635. See discussion there.
From Antti Karttunen, Dec 30 2022: (Start)
Note the correspondences between four sequences:
A355689 --- abs ---> A353627 (this sequence)
^ ^
| |
inv inv
| |
v v
A166486 <--- abs --- A358839
Here inv means that the sequences are Dirichlet Inverses of each other, and abs means taking absolute values.
(End)
FORMULA
Multiplicative with a(2^e) = 1, and for odd primes p, a(p^e) = 1 if e = 1 and 0 if e > 1.
a(n) = A008966(A000265(n)).
a(n) = abs(A209635(n)) = 1 - A353626(n).
a(n) >= A323239(n).
a(n) >= A336477(n).
a(n) <= A353628(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 8/Pi^2 (A217739). - Amiram Eldar, Jul 23 2022
a(n) = abs(A355689(n)) = A359156(n) + A359158(n). - Antti Karttunen, Dec 30 2022
Dirichlet g.f.: zeta(s)/(zeta(2*s)*(1-1/4^s)). - Amiram Eldar, Jan 01 2023
MATHEMATICA
a[n_] := If[SquareFreeQ[n/2^IntegerExponent[n, 2]], 1, 0]; Array[a, 100] (* Amiram Eldar, Jul 23 2022 *)
PROG
(PARI) A353627(n) = issquarefree(n>>valuation(n, 2));
CROSSREFS
Characteristic function of A122132. Positions of zeros: A038838.
Absolute values of A209635 and A355689, binary complement of A353626.
Parity of A342417, A354347, A354823.
Sum of A359156 and A359158.
Cf. A358839 (Dirichlet inverse), A166486 (their absolute values).
Differs from A353628 at the positions given by A353456.
Cf. also A323239, A359377.
Sequence in context: A070887 A209635 A355689 * A353628 A359551 A353458
KEYWORD
nonn,mult
AUTHOR
Antti Karttunen, May 02 2022
STATUS
approved