login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A354823
Dirichlet inverse of A351083, where A351083(n) = gcd(n, A327860(n)), and A327860 is the arithmetic derivative of the primorial base exp-function.
8
1, -1, -1, -1, -1, 1, -7, -5, 0, 1, -1, 1, -1, 13, -3, -1, -1, -2, -1, -7, 13, 1, -1, 9, -24, 1, 0, 7, -1, 7, -1, 33, 1, -15, 9, -6, -1, 1, -11, 27, -1, -25, -1, -1, 4, 1, -1, 7, 48, 24, 1, -1, -1, 2, -3, 59, 1, 1, -1, 19, -1, 1, -12, 23, 1, -1, -1, 33, 1, -23, -1, -2, -1, 1, 52, 1, 7, 23, -1, -67, 0, 1, -1, -25
OFFSET
1,7
FORMULA
a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, d<n} A351083(n/d) * a(d).
PROG
(PARI)
A327860(n) = { my(s=0, m=1, p=2, e); while(n, e = (n%p); m *= (p^e); s += (e/p); n = n\p; p = nextprime(1+p)); (s*m); };
A351083(n) = gcd(n, A327860(n));
memoA354823 = Map();
A354823(n) = if(1==n, 1, my(v); if(mapisdefined(memoA354823, n, &v), v, v = -sumdiv(n, d, if(d<n, A351083(n/d)*A354823(d), 0)); mapput(memoA354823, n, v); (v)));
CROSSREFS
Cf. A038838 (positions of even terms), A122132 (of odd terms), A353627 (parity of terms).
Sequence in context: A100976 A152627 A277067 * A241902 A356023 A113223
KEYWORD
sign
AUTHOR
Antti Karttunen, Jun 09 2022
STATUS
approved