The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A354821 a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, d
 1, -1, -1, -1, -1, -3, -1, 0, -1, -5, -1, 3, -1, -7, -6, 1, -1, 4, -1, 3, -8, -11, -1, 8, -1, -13, 0, 3, -1, 3, -1, 1, -12, -17, -10, 17, -1, -19, -14, 12, -1, 1, -1, 3, 4, -23, -1, 3, -1, 6, -18, 3, -1, 8, -14, 16, -20, -29, -1, 62, -1, -31, 4, 0, -16, -3, -1, 3, -24, -9, -1, -6, -1, -37, 6, 3, -16, -5, -1, 7, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,6 COMMENTS Dirichlet inverse of pointwise sum of A342001 (arithmetic derivative of n / A003557(n)) and A063524 (1, 0, 0, 0, ...). LINKS Antti Karttunen, Table of n, a(n) for n = 1..10080 Antti Karttunen, Data supplement: n, a(n) computed for n = 1..65537 PROG (PARI) A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1])); A003557(n) = (n/factorback(factorint(n)[, 1])); A342001(n) = (A003415(n) / A003557(n)); memoA354821 = Map(); A354821(n) = if(1==n, 1, my(v); if(mapisdefined(memoA354821, n, &v), v, v = -sumdiv(n, d, if(d

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 13 20:30 EDT 2024. Contains 375144 sequences. (Running on oeis4.)