login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A354821
a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, d<n} A342001(n/d) * a(d).
2
1, -1, -1, -1, -1, -3, -1, 0, -1, -5, -1, 3, -1, -7, -6, 1, -1, 4, -1, 3, -8, -11, -1, 8, -1, -13, 0, 3, -1, 3, -1, 1, -12, -17, -10, 17, -1, -19, -14, 12, -1, 1, -1, 3, 4, -23, -1, 3, -1, 6, -18, 3, -1, 8, -14, 16, -20, -29, -1, 62, -1, -31, 4, 0, -16, -3, -1, 3, -24, -9, -1, -6, -1, -37, 6, 3, -16, -5, -1, 7, 1
OFFSET
1,6
COMMENTS
Dirichlet inverse of pointwise sum of A342001 (arithmetic derivative of n / A003557(n)) and A063524 (1, 0, 0, 0, ...).
PROG
(PARI)
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
A003557(n) = (n/factorback(factorint(n)[, 1]));
A342001(n) = (A003415(n) / A003557(n));
memoA354821 = Map();
A354821(n) = if(1==n, 1, my(v); if(mapisdefined(memoA354821, n, &v), v, v = -sumdiv(n, d, if(d<n, A342001(n/d)*A354821(d), 0)); mapput(memoA354821, n, v); (v)));
CROSSREFS
Cf. also A346241.
Sequence in context: A103495 A261699 A285574 * A081719 A327618 A121314
KEYWORD
sign
AUTHOR
Antti Karttunen, Jun 08 2022
STATUS
approved