login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A346241
Dirichlet inverse of pointwise sum of A003415 (arithmetic derivative of n) and A063524 (1, 0, 0, 0, ...).
11
1, -1, -1, -3, -1, -3, -1, -5, -5, -5, -1, -1, -1, -7, -6, -3, -1, -2, -1, -5, -8, -11, -1, 17, -9, -13, -16, -9, -1, 3, -1, 11, -12, -17, -10, 33, -1, -19, -14, 19, -1, 1, -1, -17, -14, -23, -1, 63, -13, -14, -18, -21, -1, 28, -14, 21, -20, -29, -1, 76, -1, -31, -22, 45, -16, -3, -1, -29, -24, -9, -1, 112, -1, -37, -22, -33
OFFSET
1,4
FORMULA
a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, d<n} A003415(n/d) * a(d).
PROG
(PARI)
up_to = 65537;
DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(d<n, v[n/d]*u[d], 0)))); (u) }; \\ Compute the Dirichlet inverse of the sequence given in input vector v.
A003415plusA063524(n) = if(n<=1, 1, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
v346241 = DirInverseCorrect(vector(up_to, n, A003415plusA063524(n)));
A346241(n) = v346241[n];
(PARI)
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
memoA346241 = Map();
A346241(n) = if(1==n, 1, my(v); if(mapisdefined(memoA346241, n, &v), v, v = -sumdiv(n, d, if(d<n, A003415(n/d)*A346241(d), 0)); mapput(memoA346241, n, v); (v)));
CROSSREFS
Cf. A003415, A354806, A354807, A354808 (positions of negative terms), A354809 (of terms >= 0), A354818 (of even terms).
Sequence in context: A157892 A264441 A351566 * A328573 A369066 A283461
KEYWORD
sign
AUTHOR
Antti Karttunen, Jul 13 2021
STATUS
approved