login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A347084
Dirichlet inverse of A129283, n + A003415(n).
12
1, -3, -4, 1, -6, 13, -8, 1, 1, 19, -12, -6, -14, 25, 25, 1, -18, -5, -20, -8, 33, 37, -24, -5, 1, 43, 2, -10, -30, -87, -32, 1, 49, 55, 49, 6, -38, 61, 57, -7, -42, -113, -44, -14, -8, 73, -48, -4, 1, -5, 73, -16, -54, -9, 73, -9, 81, 91, -60, 51, -62, 97, -10, 1, 85, -165, -68, -20, 97, -163, -72, 2, -74, 115
OFFSET
1,2
LINKS
FORMULA
a(1) = 1; and for n > 2, a(n) = -Sum_{d|n, d<n} a(d) * A129283(n/d).
a(n) = A347085(n) - A129283(n).
a(n) = A347082(n) - A347086(n).
PROG
(PARI)
up_to = 16384;
DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(d<n, v[n/d]*u[d], 0)))); (u) }; \\ Compute the Dirichlet inverse of the sequence given in input vector v.
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
v347084 = DirInverseCorrect(vector(up_to, n, n+A003415(n)));
A347084(n) = v347084[n];
CROSSREFS
Cf. A003415, A129283, A347082, A347085, A347086, A348995 (positions of 1's).
Cf. also A346241, A348976.
Sequence in context: A368471 A351569 A163762 * A226776 A339278 A202500
KEYWORD
sign
AUTHOR
Antti Karttunen, Aug 17 2021
STATUS
approved