login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A081719
Triangle T(n,k) read by rows, related to Faà di Bruno's formula (n >= 0 and 0 <= k <= n).
3
1, 0, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 5, 5, 1, 0, 1, 9, 14, 7, 1, 0, 1, 13, 32, 27, 9, 1, 0, 1, 20, 66, 80, 44, 11, 1, 0, 1, 28, 123, 203, 160, 65, 13, 1, 0, 1, 40, 222, 465, 486, 280, 90, 15, 1, 0, 1, 54, 377, 985, 1305, 990, 448, 119, 17, 1, 0, 1, 75, 630, 1978, 3203, 3051, 1807, 672, 152, 19, 1
OFFSET
0,9
COMMENTS
From Petros Hadjicostas, May 30 2020: (Start)
We may prove Philippe Deléham's formula by induction on n. Let P(n,k) = A008284(n,k) and b(n) = A039809(n). For n = 0, Sum_{k=0..0} T(0,k) = 1 = b(1). Let n >= 1, and assume his formula is true for all s < n, i.e., Sum_{k=0..s} T(s,k) = b(s+1).
Then Sum_{k=0..n} T(n, k) = Sum_{k=1..n} T(n,k) = Sum_{k=1..n} Sum_{s=k-1..n-1} P(n+1, s+1)*T(s, k-1) = Sum_{s=0..n-1} P(n+1, s+1) Sum_{k=1..s+1} T(s, k-1) = Sum_{s=0..n-1} P(n+1, s+1) Sum_{m=0..s} T(s,m) = Sum_{s=0..n-1} P(n+1, s+1)*b(s+1) = Sum_{r=1..n} P(n+1, r)*b(r) = b(n+1) (by the definition of b = A039809). (End)
LINKS
Warren P. Johnson, The curious history of Faà di Bruno's formula, American Mathematical Monthly, 109 (2002), 217-234.
Warren P. Johnson, The curious history of Faà di Bruno's formula, American Mathematical Monthly, 109 (2002), 217-234.
Winston C. Yang, Derivatives are essentially integer partitions, Discrete Mathematics, 222(1-3), July 2000, 235-245.
FORMULA
There is a recurrence involving the partition function A008284.
Sum_{k=0..n} T(n,k) = A039809(n+1). - Philippe Deléham, Sep 30 2006
From Petros Hadjicostas, May 30 2020: (Start)
T(n, k) = Sum_{s=k-1..n-1} A008284(n+1, s+1)*T(s, k-1) for 1 <= k <= n with T(0,0) = 1 and T(n,0) = 0 for n >= 1.
T(n, k=2) = A007042(n) = A047812(n,2). (End)
EXAMPLE
Triangle T(n,k) (with rows n >= 0 and columns k = 0..n) begins:
1;
0, 1;
0, 1, 1;
0, 1, 3, 1;
0, 1, 5, 5, 1;
0, 1, 9, 14, 7, 1;
0, 1, 13, 32, 27, 9, 1;
0, 1, 20, 66, 80, 44, 11, 1;
...
MATHEMATICA
(* b = A008284 *)
b[n_, k_]:= b[n, k]= If[n>0 && k>0, b[n-1, k-1] + b[n-k, k], Boole[n==0 && k==0]];
T[n_, k_]:= T[n, k]= If[n==0 && k==0, 1, If[k==0, 0, Sum[T[j, k-1]*b[n+1, j+1], {j, k-1, n-1}] ]];
Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, May 31 2020 *)
PROG
(PARI) P(n, k)=#partitions(n-k, k); /* A008284 */
tabl(nn) = {A = matrix(nn, nn, n, k, 0); A[1, 1] = 1; for(n=2, nn, for(k=2, n, A[n, k] = sum(s=k-2, n-2, P(n, s+1)*A[s+1, k-1])));
for (n=1, nn, for (k=1, n, print1(A[n, k], ", "); ); print(); ); } \\ Petros Hadjicostas, May 29 2020
CROSSREFS
KEYWORD
nonn,tabl,easy
AUTHOR
N. J. A. Sloane, Apr 05 2003
EXTENSIONS
More terms from Emeric Deutsch, Feb 28 2005
STATUS
approved