Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #31 Jun 02 2020 01:58:41
%S 1,0,1,0,1,1,0,1,3,1,0,1,5,5,1,0,1,9,14,7,1,0,1,13,32,27,9,1,0,1,20,
%T 66,80,44,11,1,0,1,28,123,203,160,65,13,1,0,1,40,222,465,486,280,90,
%U 15,1,0,1,54,377,985,1305,990,448,119,17,1,0,1,75,630,1978,3203,3051,1807,672,152,19,1
%N Triangle T(n,k) read by rows, related to Faà di Bruno's formula (n >= 0 and 0 <= k <= n).
%C From _Petros Hadjicostas_, May 30 2020: (Start)
%C We may prove _Philippe Deléham_'s formula by induction on n. Let P(n,k) = A008284(n,k) and b(n) = A039809(n). For n = 0, Sum_{k=0..0} T(0,k) = 1 = b(1). Let n >= 1, and assume his formula is true for all s < n, i.e., Sum_{k=0..s} T(s,k) = b(s+1).
%C Then Sum_{k=0..n} T(n, k) = Sum_{k=1..n} T(n,k) = Sum_{k=1..n} Sum_{s=k-1..n-1} P(n+1, s+1)*T(s, k-1) = Sum_{s=0..n-1} P(n+1, s+1) Sum_{k=1..s+1} T(s, k-1) = Sum_{s=0..n-1} P(n+1, s+1) Sum_{m=0..s} T(s,m) = Sum_{s=0..n-1} P(n+1, s+1)*b(s+1) = Sum_{r=1..n} P(n+1, r)*b(r) = b(n+1) (by the definition of b = A039809). (End)
%H Warren P. Johnson, <a href="https://www.maa.org/sites/default/files/pdf/upload_library/22/Ford/Johnson217-234.pdf">The curious history of Faà di Bruno's formula</a>, American Mathematical Monthly, 109 (2002), 217-234.
%H Warren P. Johnson, <a href="https://www.jstor.org/stable/2695352?seq=1">The curious history of Faà di Bruno's formula</a>, American Mathematical Monthly, 109 (2002), 217-234.
%H Winston C. Yang, <a href="http://dx.doi.org/10.1016/S0012-365X(99)00412-4">Derivatives are essentially integer partitions</a>, Discrete Mathematics, 222(1-3), July 2000, 235-245.
%F There is a recurrence involving the partition function A008284.
%F Sum_{k=0..n} T(n,k) = A039809(n+1). - _Philippe Deléham_, Sep 30 2006
%F From _Petros Hadjicostas_, May 30 2020: (Start)
%F T(n, k) = Sum_{s=k-1..n-1} A008284(n+1, s+1)*T(s, k-1) for 1 <= k <= n with T(0,0) = 1 and T(n,0) = 0 for n >= 1.
%F T(n, k=2) = A007042(n) = A047812(n,2). (End)
%e Triangle T(n,k) (with rows n >= 0 and columns k = 0..n) begins:
%e 1;
%e 0, 1;
%e 0, 1, 1;
%e 0, 1, 3, 1;
%e 0, 1, 5, 5, 1;
%e 0, 1, 9, 14, 7, 1;
%e 0, 1, 13, 32, 27, 9, 1;
%e 0, 1, 20, 66, 80, 44, 11, 1;
%e ...
%t (* b = A008284 *)
%t b[n_, k_]:= b[n, k]= If[n>0 && k>0, b[n-1, k-1] + b[n-k, k], Boole[n==0 && k==0]];
%t T[n_, k_]:= T[n, k]= If[n==0 && k==0, 1, If[k==0, 0, Sum[T[j, k-1]*b[n+1, j+1], {j, k-1, n-1}] ]];
%t Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* _G. C. Greubel_, May 31 2020 *)
%o (PARI) P(n, k)=#partitions(n-k, k); /* A008284 */
%o tabl(nn) = {A = matrix(nn, nn, n, k, 0); A[1,1] = 1; for(n=2, nn, for(k=2, n, A[n,k] = sum(s=k-2, n-2, P(n, s+1)*A[s+1,k-1])));
%o for (n=1, nn, for (k=1, n, print1(A[n, k], ", "); ); print(); ); } \\ _Petros Hadjicostas_, May 29 2020
%Y Cf. A007042, A008284, A039809, A047812.
%K nonn,tabl,easy
%O 0,9
%A _N. J. A. Sloane_, Apr 05 2003
%E More terms from _Emeric Deutsch_, Feb 28 2005