login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A039809
For n > 1, a(n) doubles under the transform T, where Ta is the matrix product of partition triangle A008284 with a, with a(1) = 1.
4
1, 1, 2, 5, 12, 32, 83, 223, 594, 1600, 4297, 11589, 31216, 84212, 227091, 612712, 1652913, 4459962, 12033405, 32469682, 87611105, 236402465, 637884103, 1721218224, 4644392797, 12532091909, 33815653370, 91245738923
OFFSET
1,3
FORMULA
a(1) = 1 and a(n) = Sum_{i=1..n-1} A008284(n, i)*a(i) for n >= 2 (because 2*a(n) = Sum_{i=1..n} A008284(n,i)*a(i) for n >= 2).
a(n+1) = Sum_{k=0..n} A081719(n,k). - Philippe Deléham, Sep 30 2006
G.f.: (1/2) * ( x + Sum_{n>=1} a(n) * x^n / Product_{j=1..n} (1 - x^j) ). - Ilya Gutkovskiy, Jul 22 2021
EXAMPLE
So a(7) = T(7,1)*a(1) + T(7,2)*a(2) + ... + T(7,6)*a(6) = 1*1 + 3*1 + 4*2 + 3*5 + 2*12 + 1*32 = 1 + 3 + 8 + 15 + 24 + 32 = 83, where T(n,k) = A008284(n,k).
PROG
(PARI) P(n, k) = #partitions(n-k, k); /* A008284 */
lista(nn) = {my(a=vector(nn)); a[1]=1; for(n=2, nn, a[n] = sum(i=1, n-1, P(n, i)*a[i])); a; } \\ Petros Hadjicostas, May 30 2020
CROSSREFS
KEYWORD
nonn,eigen
AUTHOR
Christian G. Bower, Feb 15 1999
EXTENSIONS
Various sections edited by Petros Hadjicostas, May 30 2020
STATUS
approved