login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A173611
Self-convolution of A173610.
3
1, 2, 5, 12, 32, 86, 226, 588, 1596, 4372, 12065, 33344, 91344, 249584, 677896, 1836048, 5039672, 13877256, 38405640, 106482832, 296373672, 826270666, 2307068226, 6445895588, 17963996648, 50028938140, 139149397474
OFFSET
0,2
FORMULA
G.f. satisfies: A(x) = [C(x^2) + x*B(x^2)]^2 where
B(x) = Sum_{n>=0} a(n)^2*x^n = g.f. of A173612 and
C(x) = 1 + Sum_{n>=0} a(n)*a(n+1)*x^(n+1) = g.f. of A173613.
EXAMPLE
G.f.: A(x) = 1 + 2*x + 5*x^2 + 12*x^3 + 32*x^4 + 86*x^5 +...
Describe the g.f. of A173612 by:
B(x) = 1 + 4*x + 25*x^2 + 144*x^3 + 1024*x^4 +...+ a(n)^2*x^n +...
and describe the g.f. of A173613 by:
C(x) = 1 + 2*x + 10*x^2 + 60*x^3 + 384*x^4 +...+ a(n)*a(n+1)*x^n +...
then the g.f. of this sequence is given by:
A(x) = [C(x^2) + x*B(x^2)]^2
where A(x) is the square of the g.f. of A173610:
A(x)^(1/2) = 1 + x + 2*x^2 + 4*x^3 + 10*x^4 + 25*x^5 + 60*x^6 +...
PROG
(PARI) {a(n)=local(A=1+x, B); for(i=1, n, B=(A+x*O(x^n))^2; A=1+x*sum(m=0, n\2, polcoeff(B, m)*polcoeff(B, m+1)*x^(2*m+1)) +x*sum(m=0, n\2, polcoeff(B, m)^2*x^(2*m))); polcoeff(A^2, n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 22 2010
EXTENSIONS
Edited by Paul D. Hanna, Feb 23 2010
STATUS
approved