The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A173613 Even bisection of A173610. 3
 1, 2, 10, 60, 384, 2752, 19436, 132888, 938448, 6977712, 52748180, 402295360, 3045774336, 22798000896, 169191995264, 1244649595008, 9253079696256, 69936818500032, 532964898123840, 4089541311972480, 31558707924799104 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS FORMULA a(n) = A173611(n)*A173611(n-1) for n>0, with a(0)=1, where A173611 is the self-convolution of A173610. EXAMPLE G.f.: A(x) = 1 + 2*x + 10*x^2 + 60*x^3 + 384*x^4 + 2752*x^5 +... Describe the g.f. of A173610 by: B(x) = 1 + x + 2*x^2 + 4*x^3 + 10*x^4 + 25*x^5 + 60*x^6 + 144*x^7 +... then the g.f. of A173611 is given by C(x) = B(x)^2: C(x) = 1 + 2*x + 5*x^2 + 12*x^3 + 32*x^4 + 86*x^5 +... where the product of adjacent coefficients of C(x) form this sequence and yields the even bisection of A173610. PROG (PARI) {a(n)=local(A=1+x, B); for(i=1, n, B=(A+x*O(x^n))^2; A=1+x*sum(m=0, n\2, polcoeff(B, m)*polcoeff(B, m+1)*x^(2*m+1)) +x*sum(m=0, n\2, polcoeff(B, m)^2*x^(2*m))); if(n==0, 1, polcoeff(A^2, n)*polcoeff(A^2, n-1))} CROSSREFS Cf. A173610, A173611, A173612. Sequence in context: A026161 A025188 A114620 * A004981 A214764 A137571 Adjacent sequences:  A173610 A173611 A173612 * A173614 A173615 A173616 KEYWORD nonn AUTHOR Paul D. Hanna, Feb 22 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 27 18:35 EDT 2020. Contains 337386 sequences. (Running on oeis4.)