

A173614


a(n) = lcm_{p is prime and divisor of n} p1.


3



1, 2, 1, 4, 2, 6, 1, 2, 4, 10, 2, 12, 6, 4, 1, 16, 2, 18, 4, 6, 10, 22, 2, 4, 12, 2, 6, 28, 4, 30, 1, 10, 16, 12, 2, 36, 18, 12, 4, 40, 6, 42, 10, 4, 22, 46, 2, 6, 4, 16, 12, 52, 2, 20, 6, 18, 28, 58, 4, 60, 30, 6, 1, 12, 10, 66, 16, 22, 12, 70, 2, 72, 36, 4, 18, 30, 12, 78, 4, 2, 40, 82, 6
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

2,2


COMMENTS

The function psi(n) in the paper by Carlip et al.  R. J. Mathar, Aug 22 2012


LINKS

Andrew Howroyd, Table of n, a(n) for n = 2..10000
W. Carlip, E. Jacobson, and L. Somer, Pseudoprimes, perfect numbers and a problem of Lehmer, Fib. Quart. 36 (4) (1998) 361


FORMULA

Conjecture: a(n) = A002322(A007947(n)).  Velin Yanev, Feb 06 2021


EXAMPLE

1425 = 3*5^2*19 => a(1425) = lcm(2,4,18) = 36.


MATHEMATICA

a[n_] := {aux = 1; fa = FactorInteger[n]; len = Length[fa]; grau = Table[fa[[s]][[1]]  1, {s, len}]; Do[aux = LCM[aux, grau[[i]]], {i, len}]; aux}[[1]]; Table[a[n], {n, 2, 40}]


PROG

(PARI) a(n)=lcm(apply(p>p1, factor(n)[, 1])) \\ Andrew Howroyd, Aug 06 2018


CROSSREFS

Sequence in context: A098371 A300234 A070777 * A173557 A023900 A141564
Adjacent sequences: A173611 A173612 A173613 * A173615 A173616 A173617


KEYWORD

nonn,changed


AUTHOR

José María Grau Ribas, Feb 22 2010


STATUS

approved



