login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A173615 Numbers n such that rad(n)^2 divides sigma(n). 2
1, 96, 864, 1080, 1782, 6144, 7128, 7776, 17280, 27000, 28512, 54432, 55296, 69984, 87480, 114048, 215622, 276480, 381024, 393216, 432000, 433026, 456192, 497664, 629856, 675000, 862488, 1382400, 1399680, 1677312, 1732104, 1824768, 2187000, 2195424, 2667168 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

rad(n) is the product of the primes dividing n (A007947) and sigma(n) = sum of divisors of n (A000203). Considering the integers n = (2^a)*(3^b), where a+1 = 6k and b >= 1, we obtain an infinite number of numbers such that rad(n)^2 divides sigma(n).

REFERENCES

M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.

LINKS

Donovan Johnson, Table of n, a(n) for n = 1..300

W. Sierpinski, Number Of Divisors And Their Sum

EXAMPLE

rad(96)^2 = 6^2 = 36, sigma(96) = 252 and 36 divides 252

MAPLE

for n from 1 to 2000000 do : t1:= ifactors(n)[2] : t2 :=mul(t1[i][1], i=1..nops(t1)): if irem(sigma(n), t2^2) = 0 then print (n): else fi: od :

CROSSREFS

Cf. A000203, A007947.

Sequence in context: A096783 A253410 A202890 * A103846 A203979 A296960

Adjacent sequences:  A173612 A173613 A173614 * A173616 A173617 A173618

KEYWORD

nonn

AUTHOR

Michel Lagneau, Feb 22 2010

EXTENSIONS

a(30)-a(35) from Donovan Johnson, Jan 14 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 26 13:05 EDT 2019. Contains 323586 sequences. (Running on oeis4.)