login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A173610
Bisections are {b(n)*b(n+1), n>=0} (shifted) and {b(n)^2, n>=0} where {b(n), n>=0} is the self-convolution of this sequence, with a(0)=1.
3
1, 1, 2, 4, 10, 25, 60, 144, 384, 1024, 2752, 7396, 19436, 51076, 132888, 345744, 938448, 2547216, 6977712, 19114384, 52748180, 145564225, 402295360, 1111822336, 3045774336, 8343726336, 22798000896, 62292173056, 169191995264
OFFSET
0,3
COMMENTS
The limit a(n+1)/a(n) seems to exist, with a value near 2.81...
FORMULA
G.f. satisfies: (A(x) + A(-x))/2 = 1 + x*Sum_{n>=0} b(n)*b(n+1)*x^(2n+1) and
(A(x) - A(-x))/2 = x*Sum_{n>=0} b(n)^2*x^(2n) where Sum_{n>=0} b(n)*x^n = A(x)^2 with a(0)=1.
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 4*x^3 + 10*x^4 + 25*x^5 + 60*x^6 +...
The square of the g.f. begins:
A(x)^2 = 1 + 2*x + 5*x^2 + 12*x^3 + 32*x^4 + 86*x^5 +...+ b(n)*x^n +...
where the odd bisection yields the series with squared coefficients:
(A(x) - A(-x))/2 = x + 4*x^3 + 25*x^5 + 144*x^7 + 1024*x^9 +...+ b(n)^2*x^(2n+1) +...
and the even bisection yields the series:
(A(x) + A(-x))/2 = 1 + 2*x^2 + 10*x^4 + 60*x^6 + 384*x^8 +...+ b(n)*b(n+1)*x^(2n+2) +...
PROG
(PARI) {a(n)=local(A=1+x, B); for(i=1, n, B=(A+x*O(x^n))^2; A=1+x*sum(m=0, n\2, polcoeff(B, m)*polcoeff(B, m+1)*x^(2*m+1)) +x*sum(m=0, n\2, polcoeff(B, m)^2*x^(2*m))); polcoeff(A, n)}
CROSSREFS
Cf. A173611 (square), bisections: A173612, A173613.
Sequence in context: A123420 A000458 A089928 * A036887 A307578 A151536
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 22 2010
STATUS
approved