login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A173610 Bisections are {b(n)*b(n+1), n>=0} (shifted) and {b(n)^2, n>=0} where {b(n), n>=0} is the self-convolution of this sequence, with a(0)=1. 3
1, 1, 2, 4, 10, 25, 60, 144, 384, 1024, 2752, 7396, 19436, 51076, 132888, 345744, 938448, 2547216, 6977712, 19114384, 52748180, 145564225, 402295360, 1111822336, 3045774336, 8343726336, 22798000896, 62292173056, 169191995264 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

The limit a(n+1)/a(n) seems to exist, with a value near 2.81...

LINKS

Table of n, a(n) for n=0..28.

FORMULA

G.f. satisfies: (A(x) + A(-x))/2 = 1 + x*Sum_{n>=0} b(n)*b(n+1)*x^(2n+1) and

(A(x) - A(-x))/2 = x*Sum_{n>=0} b(n)^2*x^(2n) where Sum_{n>=0} b(n)*x^n = A(x)^2 with a(0)=1.

EXAMPLE

G.f.: A(x) = 1 + x + 2*x^2 + 4*x^3 + 10*x^4 + 25*x^5 + 60*x^6 +...

The square of the g.f. begins:

A(x)^2 = 1 + 2*x + 5*x^2 + 12*x^3 + 32*x^4 + 86*x^5 +...+ b(n)*x^n +...

where the odd bisection yields the series with squared coefficients:

(A(x) - A(-x))/2 = x + 4*x^3 + 25*x^5 + 144*x^7 + 1024*x^9 +...+ b(n)^2*x^(2n+1) +...

and the even bisection yields the series:

(A(x) + A(-x))/2 = 1 + 2*x^2 + 10*x^4 + 60*x^6 + 384*x^8 +...+ b(n)*b(n+1)*x^(2n+2) +...

PROG

(PARI) {a(n)=local(A=1+x, B); for(i=1, n, B=(A+x*O(x^n))^2; A=1+x*sum(m=0, n\2, polcoeff(B, m)*polcoeff(B, m+1)*x^(2*m+1)) +x*sum(m=0, n\2, polcoeff(B, m)^2*x^(2*m))); polcoeff(A, n)}

CROSSREFS

Cf. A173611 (square), bisections: A173612, A173613.

Sequence in context: A123420 A000458 A089928 * A036887 A307578 A151536

Adjacent sequences:  A173607 A173608 A173609 * A173611 A173612 A173613

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Feb 22 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 22 21:58 EDT 2020. Contains 337962 sequences. (Running on oeis4.)