login
a(n) = 1 if the odd part of n is squarefree, otherwise 0.
21

%I #37 Jan 01 2023 02:29:39

%S 1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,0,1,0,1,1,1,1,1,1,1,

%T 1,0,1,1,1,1,1,1,1,1,0,1,1,1,0,0,1,1,1,0,1,1,1,1,1,1,1,1,0,1,1,1,1,1,

%U 1,1,1,0,1,1,0,1,1,1,1,1,0,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,0,0,0,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,0,1,1,1,0

%N a(n) = 1 if the odd part of n is squarefree, otherwise 0.

%C Sequence gives the absolute values of A209635. See discussion there.

%C From _Antti Karttunen_, Dec 30 2022: (Start)

%C Note the correspondences between four sequences:

%C A355689 --- abs ---> A353627 (this sequence)

%C ^ ^

%C | |

%C inv inv

%C | |

%C v v

%C A166486 <--- abs --- A358839

%C Here inv means that the sequences are Dirichlet Inverses of each other, and abs means taking absolute values.

%C (End)

%H Antti Karttunen, <a href="/A353627/b353627.txt">Table of n, a(n) for n = 1..65537</a>

%H <a href="/index/Ch#char_fns">Index entries for characteristic functions</a>.

%F Multiplicative with a(2^e) = 1, and for odd primes p, a(p^e) = 1 if e = 1 and 0 if e > 1.

%F a(n) = A008966(A000265(n)).

%F a(n) = abs(A209635(n)) = 1 - A353626(n).

%F a(n) >= A323239(n).

%F a(n) >= A336477(n).

%F a(n) <= A353628(n).

%F Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 8/Pi^2 (A217739). - _Amiram Eldar_, Jul 23 2022

%F a(n) = abs(A355689(n)) = A359156(n) + A359158(n). - _Antti Karttunen_, Dec 30 2022

%F Dirichlet g.f.: zeta(s)/(zeta(2*s)*(1-1/4^s)). - _Amiram Eldar_, Jan 01 2023

%t a[n_] := If[SquareFreeQ[n/2^IntegerExponent[n, 2]], 1, 0]; Array[a, 100] (* _Amiram Eldar_, Jul 23 2022 *)

%o (PARI) A353627(n) = issquarefree(n>>valuation(n, 2));

%Y Characteristic function of A122132. Positions of zeros: A038838.

%Y Absolute values of A209635 and A355689, binary complement of A353626.

%Y Parity of A342417, A354347, A354823.

%Y Sum of A359156 and A359158.

%Y Cf. A358839 (Dirichlet inverse), A166486 (their absolute values).

%Y Differs from A353628 at the positions given by A353456.

%Y Cf. A000265, A008966, A217739, A336477.

%Y Cf. also A323239, A359377.

%K nonn,mult

%O 1

%A _Antti Karttunen_, May 02 2022